
CSE 546: Machine Learning Lecture 3

Bias-Variance Tradeoff and Dimension-Free Regression

Instructor: Sham Kakade

1 Risk, in the well specified case

Suppose now that the linear model is correct. In particular, assume that:

Y = w>∗ X + η

where η ∼ N (0, σ2) and where X is a vector (we use bold face to denote matrices). Here, η is referred to as the noise.

Again, suppose we observe data:
T = (x1, y1), . . . (xn, yn)

where:
yi = w>∗ xi + ηi

so ηi is the noise in the i-th observation.

Define
Σ :=

1

n
X>X

Let ŵT be any estimation procedure using the training set T . We can define the risk of this procedure as:

R(ŵT ) = EY(ŵT − w∗)>Σ(ŵT − w∗) := EY‖ŵT − w∗‖2Σ

where the expectation is over the Y = [Y1, . . . Yn]. We condition on X1, . . . Xn. Intuitively, this risk is a measure of
the error in the parameters.

It is straightforward to see that risk is equivalent the following:

R(ŵ) =
1

n
EY‖XŵY −Xw∗‖2 =

1

n

∑
i

EY(ŵ>YXi − E[Y |Xi])
2

Sometimes this is referred to as de-noising (or fixed design) regression, as we are looking at the error on the training
set.

1.1 Risk Bounds for Least Squares

Recall that:
ŵleast squares =

1

n
Σ−1X>Y

Lemma 1.1. (Risk Bound) We have that:

R(ŵleast squares) =
d

n
σ2
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Proof. Define η as the noise vector [η1, η2, . . . ηn]. So we have:

Y = Xw∗ + η

and so:
ŵ − w∗ =

1

n
Σ−1X>(Xw∗ + η)− w∗ =

1

n
Σ−1X>η

using the definition of ŵ.

The risk is then:

R(ŵ) =
1

n2
Eηη

>XΣ−1X>η =
1

n2
Eηη

>UU>η =
1

n
Eηη

>UU>η =
d

n
σ2

where U is the left orthogonal matrix of the thin SVD of X. Here, U is an n× d orthogonal matrix so UU>, so U>η
is a d-dimensional Gaussian vector whose distribution is N(0, Id) where Id is the d× d identity matrix.

2 What about if d > n?

If d > n, the risk of the least squares estimator is not useful. There are two common approaches we seek to understand
in detail:

• Regularization. The idea is to “shrink” w in a certain manner to reduce variance (and increase bias).

• Feature Selection. The idea is to fit w only in certain directions (and exclude other irrelevant directions).

3 Bias-Variance Tradeoff (in the well specified case)

Lemma 3.1. (bias-variance for risk) Define w = E[ŵ] We can decompose the expected risk as:

R(ŵ) = EY‖ŵ − w‖2Σ + ‖w − w∗‖2Σ

=
1

n
EY‖Xŵ −Xw‖2 +

1

n
‖Xw∗ −Xw‖2

where we have that:
variance = EY‖ŵ − w‖2Σ =

1

n
EY‖Xŵ −Xw‖2

and
prediction bias vector = Xw∗ −Xw

4 Ridge Regression

The ridge regression estimator using an outcome Y is just:

ŵλ = arg minw
1

n
‖Y −Xw‖2 + λ‖w‖2

The estimator is then:
ŵλ = (Σ + λI)−1(

1

n
X>Y) = (Σ + λI)−1(

1

n

∑
YiXi)
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4.1 Risk of Ridge Regression

There following bound characterizes the risk of the ridge regression estimator, for a particular choice of λ.

Theorem 4.1. Assume the linear model is correct: Define d as:

d =
1

n

∑
i

‖Xi‖2

For λ =

√
d

‖w∗‖
√
n

, then:

R(ŵλ) ≤ ‖w∗‖
√
d√

n
≤ ‖w∗‖X+√

n

where X+ is a bound on the norm of ‖X‖i.

5 What about prediction error and model mis-specification?

We have worked under a somewhat unrealistic setting in that:

• We have assumed the model is correct.

• We have assumed the noise is Gaussian

• Our notion of Risk is measured under the observed points X1, . . . Xn, while we often care about our prediction
on new points?

Roughly speaking, most of these results transfer over when all of these assumptions are relaxed. We will see one such
example later, where we look at stochastic gradient descent.

6 Coordinate Ascent

How should we fit a ’big’ model?

Suppose we want to optimize a function L(w1, w2, . . . wd) where d is large. A simple iterative method is to start with
some vector w. Then one can randomly pick a subset of coordinates of coordinates and improve the value of f where
we only change the values of w on this subset.
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