
CSE 546 Machine Learning, Autumn 2015

Homework 3

Due: Tuesday, November 24, beginning of class

1 Fitting an SVM classifier by hand [50 Points]

(Source: Murphy text, Exercise 14.1) Consider a dataset with 2 points in 1d:

(x1 = 0, y1 = −1) and (x2 =
√

2, y2 = 1).

Consider mapping each point to 3d using the feature vector φ(x) = [1,
√

2x, x2]T (This
is equivalent to using a second order polynomial kernel).

When we examined the perceptron algorithm in class, we related the number of mistakes
to the margin of the data. If our data are linearly separable, then a natural method is to
try to find a classifier which maximizes the margin. Here, the max margin classifier has the
form

ŵ, ŵ0 = arg min ||w||2 s.t. (1)

y1(wTφ(x1) + w0) ≥ 1 (2)

y2(wTφ(x2) + w0) ≥ 1 (3)

1. (10 Points) Write down a vector that is parallel to the optimal vector ŵ. Hint: Re-
call from Figure 14.12 (page 500 in the Murphy text) that ŵ is perpendicular to the
decision boundary between the two points in the 3d feature space.

2. (10 Points) What is the value of the margin that is achieved by this ŵ? Hint: Recall
that the margin is the distance from each support vector to the decision boundary.
Hint 2: Think about the geometry of the points in feature space, and the vector be-
tween them.

3. (10 Points) Solve for ŵ, using the fact the margin is equal to 1/||ŵ||.

4. (10 Points) Solve for ŵ0 using your value for ŵ and Equations 1 to 3. Hint: The points
will be on the decision boundary, so the inequalities will be tight. A “tight inequality”
is an inequality that is as strict as possible. For this problem, this means that plugging
in these points will push the left-hand side of Equations 2 and 3 as close to 1 as possible.
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5. (10 Points) Write down the form of the discriminant function f(x) = ŵ0 + ŵTφ(x)
as an explicit function of x. Plot the 2 points in the dataset, along with f(x) in a 2d
plot. You may generate this plot by hand, or using a computational tool like Python.

Show your work.

2 SVMs: Hinge loss and mistake bounds [25 Points]

Suppose we classify with the hypothesis hw(x) = sgn(w>x) where sgn(z) = 1 if z is positive
and −1 otherwise. Here we are dealing with binary prediction where each label is in {−1, 1}.
Let us say we make a mistake on x, y with w if y 6= sgn(w>x). The number of mistakes
with w on a dataset is the classification loss.

The SVM loss function can be viewed as a relaxation to the classification loss. The hinge
loss on a pair (x, y) is defined as:

`((x, y), w) = max{0, 1− yw>x}

where x ∈ Rd and y ∈ {−1, 1}. The SVM attempts to minimize:

1

n

n∑
i=1

max{0, 1− yiw>xi}+ λ‖w‖2

where λ is a regularizer (there are different conventions as to how we write the regularizer,
e.g. sometimes we write λ

n instead of just λ).
The hinge loss provides a way of dealing with datasets that are not separable. Let us

go through the argument as to why we view this as a relaxation of finding the max margin
classifier.

1. (5 Points) Argue that the function `((x, y), w) = max{0, 1 − yw>x} is convex (as a
function of w).

2. (10 Points) (Margin mistakes) Suppose that for some w we have a correct prediction of
yi with xi, i.e. yi = sgn(w>xi). What range of values can the hinge loss, `((xi, yi), w),
take on this correctly classified example? Points which are classified correctly and
which have non-zero hinge loss are referred to as margin mistakes.

3. (10 Points) (Mistake bound) Let M(w) be the number of mistakes made by w on our
dataset (in terms of the classification loss). Show that:

1

n
M(w) ≤ 1

n

n∑
i=1

max{0, 1− yiw>xi}

In other words, the average hinge loss on our dataset is an upper bound on the average
number of mistakes we make on our dataset.
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3 Programming Question [50 Points]

In this problem, we seek to perform a digit recognition task, where we are given an image of
a handwritten digit and wish to predict what number it represents. This is a special case of
an important area of language processing known as Optical Character Recognition (OCR).
We will be simplifying our goal to that of a binary classification between two relatively
hard-to-distinguish numbers (specifically, predicting a 3 versus a 5). To do this, you will
implement a linear support vector machine (SVM).

3.1 Dataset

The digit images have been taken from a Kaggle competition, http://www.kaggle.com/
c/digit-recognizer/data, and the data is on here https://courses.cs.washington.

edu/courses/cse546/15au/hw/hw3-data.zip. This data was originally from the MNIST
database of handwritten digits, but was converted into a easier-to-use file format.

The data have also undergone some preprocessing. They have been filtered to just those
datapoints whose labels are 3 or 5, which have then been relabeled to 1 and -1 respectively.
Then, we subsampled to create two datasets validation.csv and test.csv (N = 1000
for both). Each row in these files represents an image. The first column is the label of
the image, and the remaining columns give the grayscale values for each pixel. We will use
validation.csv as training data, and test.csv as test data.

Preprocessing The data provided in the csv file is in the range [0, 256). Normally when
you work with a linear model, you want to normalize the data so that the range is closer to
[0, 1]. There are many ways to perform data normalization, and in this homework we use
the following L2 normalization

x← x/ ‖x‖ (4)

Here ‖x‖ is the L2 norm of x. This normalization will make each input vector have unit
length, and it usually works well in practice. You can use the following code to load and
normalize the data:

def loaddata(fname):

data = np.loadtxt(fname,skiprows=1, delimiter=‘,’)

y = data[:,0]

X = data[:,1:]

nm = np.sqrt(np.sum(X * X, axis=1))

X = X / nm[:,None]

return y, X

trainY, trainX = loaddata(‘validation.csv’)

testY, testX = loaddata(‘test.csv’)

3.2 Implement Linear SVM

The objective of a linear SVM can be written as

arg min
w,w0

‖w‖22 + C

N∑
j=1

l(w, w0,x
(j), y(j)) (5)
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Here l(w, w0,x
(j), y(j)) is the hinge loss of the j-th instance:

l(w, w0,x
(j), y(j)) = max

(
1− y(j)(wTx(j) + w0), 0

)
Note that this objective value grows with N and C. In this homework, we will use an

equivalent formalization, by multiplying the objective with 1
NC , so that the objective and

its gradient have the same scale as N and C changes.

arg min
w,w0

1

NC
‖w‖22 +

1

N

N∑
j=1

l(w, w0,x
(j), y(j)) (6)

We can use stochastic gradient descent to optimize this objective. The update rule for
wi with the j-th instance will be

w
(t+1)
i ← w

(t)
i − η ∂wi

L̃(j)(w(t), w
(t)
0 ) (7)

where L̃(j) is approximation of the loss function using only the j-th sample

L̃(j)(w, w0) =
1

NC
‖w‖22 + l(w, w0,x

(j), y(j)) (8)

and ∂wi
L̃(j)(w(t), w

(t)
0 ) is the subgradient of the approximate loss over wi. A similar

update rule can be applied to w0.

1. (4 points) Write the stochastic gradient descent update rules for both w and w0 in
linear SVMs.

2. Implement SGD for linear SVMs. Initially start all the weights at 0.

3. (9 points) Using validation.csv as your training set, run 50 passes over the dataset
(i.e. 50× 1000 SGD updates), using η = 0.1 and C = 1. Plot the loss in Eq. (6) after
each pass.

4. (9 points) Using the ŵ, ŵ0 learned after 50 passes, report:

(a) The prediction error on test.csv (test error)

(b) The prediction error on validation.csv (training error)

(c) ‖w‖

5. (18 points) Change C to 100 and repeat what you did in the previous two questions,
using the same values for η and the number of passes.

6. (10 points) Compare the results you get using C = 100 vs. C = 1 on the test/training
error and ‖w‖. Explain the difference using the bias-variance tradeoff. (Hint: Which
setting has higher variance?)
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4 Extra Credit: Fourier Features and getting state of
the art on MNIST [75 Points]

Let us now try to get state of the art on MNIST (and replicate the experiments done in
class).

1. (50 points) Obtain less than 1.2% test error on the binary classification problem (and
remember to submit your code). Hint: here is that I did in class:

(a) I first PCAed the images down to 30 dimensions, using the projection obtained
from the top 30 directions of the covariance matrix.

(b) Then I made around 100K Fourier features of the form, where the i-th features
is φi(x) = cos(w>i x) where wi sampled from a Gaussian N(0, σ2I) where σ2 =
E[‖x‖2]/4. The choice of 1/4 is a reasonable heuristic in practice (provided the
data are near to mean 0, which is the case after our PCA). Here i is the i-th
feature.

(c) I then used block coordinate ascent.

2. (25 points) Try using the same features using logistic regression or an SVM and report
what you get. Did you find an improvement?

5 Extra Credit: Boosting [30 Points]

The boosting theory claims that one can boost the performance (on the training set) of
any weak learner arbitrarily high, provided the weak learned could always perform slightly
better than chance. We will now verify this in the AdaBoost framework. (Note that this
assumption is rather strong and is specifically only about the training set).

1. (7 points) Given a set of N observations (xj , yj) where yj is the label yj ∈ {−1, 1},
let ht(x) be the weak classifier at step t and let αt be its weight. First we note that
the final classifier after T steps is defined as:

H(x) = sgn

{
T∑
t=1

αtht(x)

}
= sgn{f(x)}

Where

f(x) =

T∑
t=1

αtht(x)

Show that:

εTraining =
1

N

N∑
j=1

1{H(xj)6=yj} ≤
1

N

N∑
j=1

exp(−f(xj)yj)

Where 1{H(xj)6=yj} is 1 if H(xj) 6= yj and 0 otherwise.
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2. (8 points) The weight for each data point j at step t+ 1 can be defined recursively by:

w
(t+1)
j =

w
(t)
i exp(−αtyjht(xj))

Zt

Where Zt is a normalizing constant ensuring the weights sum to 1:

Zt =

N∑
j=1

wtj exp(−αtyjht(xj))

Show that:

1

N

N∑
j=1

exp(−f(xj)yj) =

T∏
t=1

Zt

3. (15 points) We showed above that training error is bounded above by
∏T
t=1 Zt. At

step t the values Z1, Z2, . . . , Zt−1 are already fixed therefore at step t we can choose
αt to minimize Zt. Let

εt =

m∑
j=1

wtj1{ht(xj)6=yj}

be the weighted training error for weak classifier ht(x) then we can re-write the formula
for Zt as:

Zt = (1− εt) exp(−αt) + εt exp(αt)

(a) First find the value of αt that minimizes Zt then show that

Zoptt = 2
√
εt(1− εt)

(b) Assume we choose Zt this way. Then re-write εt = 1
2 − γt where γt > 0 implies

better than random and γt < 0 implies worse than random. Then show that:

Zt ≤ exp(−2γ2t )

You may want to use the fact that log(1− x) ≤ −x for 0 ≤ x < 1

Thus we have:

εtraining ≤
T∏
t=1

Zt ≤ exp(−2

T∑
t=1

γ2t )

(c) Finally, show that if each classifier is better than random (e.g. γt ≥ γ for all t
and γ > 0) that:

εtraining ≤ exp(−2Tγ2)

Which shows that the training error can be made arbitrarily small with enough steps.
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