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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 

3 ©Carlos Guestrin 2005-2014 

Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	


    

 

  

 For i=1,…,k,  

 

 

repeat    

4 ©Carlos Guestrin 2005-2014 

(t) 

(t) 



3 

The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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Gradient descent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient descent rule: 

 
n  How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 

©Carlos Guestrin 2005-2014 9 

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i  w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i  w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Stochastic Gradient Descent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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Fighting the bias-variance tradeoff 

n  Simple (a.k.a. weak) learners are good 
¨ e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees) 
¨ Low variance, don’t usually overfit too badly 

n  Simple (a.k.a. weak) learners are bad 
¨ High bias, can’t solve hard learning problems 

n  Can we make weak learners always good??? 
¨ No!!! 
¨ But often yes… 
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Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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Boosting 
n  Idea: given a weak learning alg, run it multiple times on (reweighted) 

training data, then let learned classifiers vote 

n  On each iteration t:  
¨  weight each training example by how incorrectly it was classified 
¨  Learn a hypothesis – ht 
¨  A strength for this hypothesis – αt  

n  Final classifier: 

n  Practically useful 
n  Theoretically interesting 

[Schapire, 1989] 
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Learning from weighted data 
n  Sometimes not all data points are equal 

¨  Some data points are more equal than others 
n  Consider a weighted dataset 

¨  D(j) – weight of j th training example (xj,yj) 
¨  Interpretations: 

n  j th training example counts as D(j) examples 
n  If I were to “resample” data, I would get more samples of “heavier” data points 

n  Now, in all calculations, whenever used, j th training example counts as 
D(j) “examples” 
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AdaBoost 
n  Initialize weights to uniform dist: D1(j) = 1/N 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Picking Weight of Weak Learner 

n  Weigh ht higher if it did well on training data 
(weighted by Dt): 

¨ Where εt is the weighted training error: 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
If we minimize ∏t Zt, we minimize our training error 
  
AdaBoost tightens this bound greedily, by choosing αt and ht on 

each iteration to minimize Zt. 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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