

Support Vector Machine

Tianqi Chen Nov. 5 2014

The Linear SVM Objective

This is the objective used when the data is linearly separable

Constraint Violation and Slack Variables

Original SVM

subject to
$$\begin{array}{l} argmin \|w\|^2 \\ y^{(j)}(\mathbf{w}^T \mathbf{x}^{(j)} + w_0) \ge 1, j \in \{1, 2, \cdots, N\} \end{array}$$

The soft constraint version

$$\begin{aligned} & \operatorname{argmin} \|w\|^2 + C \sum_{j=1}^N \xi^{(j)} \\ & \operatorname{subject to} \quad y^{(j)} (\mathbf{w}^T \mathbf{x}^{(j)} + w_0) \geq 1 - \xi^{(j)}, \ \xi^{(j)} \geq 0, j \in \{1, 2, \cdots, N\} \end{aligned}$$
 Slack variable: how much violation instance j have on the constraint

- This allows the constraint to be violated for some (outlier) j
- We add a linear penalty to the violations of constraint

Soft Constraint and Hinge Loss

• The soft constraint version

subject to
$$y^{(j)}(\mathbf{w}^T \mathbf{x}^{(j)} + w_0) \ge 1 - \xi^{(j)}, \ \xi^{(j)} \ge 0, j \in \{1, 2, \cdots, N\}$$

- This means $\xi^{(j)} \ge 1 y^{(j)} (\mathbf{w}^T \mathbf{x}^{(j)} + w_0)$ also note $\xi^{(j)} \ge 0$
- The equivalent form

$$argmin \|w\|^{2} + C \sum_{j=1}^{N} \max\left(1 - y^{(j)}(\mathbf{w}^{T}\mathbf{x}^{(j)} + w_{0}), 0\right)$$

Hinge Loss

Soft Constraint and Hinge Loss(cont')

- Think of following new problem
- Assume we have set of pairs $\{(\mathbf{x}_1, \mathbf{z}_1), (\mathbf{x}_2, \mathbf{z}_2), \cdots, (\mathbf{x}_N, \mathbf{z}_N)\}$
 - We know that for each pair, x is better than z
 - How can we learn the rank of the items from these pairs?
 - Objective will look like

subject to $argmin ||w||^2 + C \sum_{j=1}^N \xi^{(j)}$ $(\mathbf{w}^T \mathbf{x}^{(j)} + w_0) \ge (\mathbf{w}^T \mathbf{z}^{(j)} + w_0) + 1 - \xi^{(j)}, j \in \{1, 2, \cdots, N\}$

• What is the corresponding hinge loss form?

SGD for Linear Model

- Think of how can you implement SGD for both logistic regression, linear regression and linear SVM
- General loss function

$$L(\mathbf{w}, w_0) = \frac{\lambda}{N} \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{j=1}^N l(\hat{y}^{(j)}, y^{(j)}), \ \hat{y}^{(j)} = \mathbf{w}^T \mathbf{x}^{(j)} + w_0$$

• SGD update rule (derived using chain rule)

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} - \eta \left(2\frac{\lambda}{N} \mathbf{w}_{i}^{(t)} + \mathbf{x}_{i}^{(j)} \partial_{\hat{y}^{(j)}} l(\mathbf{w}^{T} \mathbf{x}^{(j)} + w_{0}, y^{(j)}) \right)$$

SVM hinge loss

$$l(\hat{y}, y) = \max(1 - \hat{y}y, 0), \ \partial_{\hat{y}}l(\hat{y}, y) = \begin{cases} -y & \hat{y}y < 1\\ 0 & \hat{y}y \ge 1 \end{cases}$$

Ridge regression, square loss

$$l(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2, \quad \partial_{\hat{y}}l(\hat{y}, y) = \hat{y} - y$$

SGD for Linear Model (cont')

• Again, think of separation between model and objective function (loss and regularization)

- Think of this question: How can you implement a SGD solver for logistic/linear regression and linear SVM, with L1 or L2 regularization supported.
 - I would encourage you to try, and see how much code you can reuse
 - Same thing applies beyond linear models(e.g. Matrix Factorization, Neural Nets)

One thing you need to know about Kernel

• Many machine learning models accepts kernel as input instead of explicit feature mapping.

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi^T(\mathbf{x}^{(i)})\phi(\mathbf{x}^{(j)})$$

Kernel

Feature mapping

- When is kernel more helpful than explicit feature mapping?
 - Sometimes it is easier to specify inner product(distance) than explicit feature map
 - String kernels
 - Graph kernels
 - Image matching kernels

Midterm

- The grades has been posted
- When you have time, try to take a look at all the questions, including the one you did not manage to answer
- Try to learn from the questions ③