
Markov Decision
Processes (MDPs)

Machine Learning – CSE546
Carlos Guestrin
University of Washington

December 2, 2014
©Carlos Guestrin 2005-2014 1

Reinforcement Learning

training by feedback

©Carlos Guestrin 2005-2014 2

Learning to act

n  Reinforcement learning
n  An agent

¨  Makes sensor observations
¨  Must select action
¨  Receives rewards

n  positive for “good” states
n  negative for “bad” states

[Ng et al. ’05]

©Carlos Guestrin 2005-2014 3

Markov Decision Process (MDP)
Representation

n  State space:
¨  Joint state x of entire system

n  Action space:
¨  Joint action a= {a1,…, an} for all agents

n  Reward function:
¨  Total reward R(x,a)

n  sometimes reward can depend on action

n  Transition model:
¨  Dynamics of the entire system P(x’|x,a)

©Carlos Guestrin 2005-2014 4

Discount Factors

People in economics and probabilistic decision-making do
this all the time.	

The “Discounted sum of future rewards” using discount
factor γ” is

 (reward now) +
 γ (reward in 1 time step) +
 γ 2 (reward in 2 time steps) +
 γ 3 (reward in 3 time steps) +
 :
 : (infinite sum)

©Carlos Guestrin 2005-2014 5

The Academic Life

 Define:
 VA = Expected discounted future rewards starting in state A
 VB = Expected discounted future rewards starting in state B
 VT = “ “ “ “ “ “ “ T
 VS = “ “ “ “ “ “ “ S

 VD = “ “ “ “ “ “ “ D

 How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.
Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

©Carlos Guestrin 2005-2014 6

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

©Carlos Guestrin 2005-2014 7

Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
 γ3 R(x3) + γ4 R(x4) + …]

Future rewards
discounted by γ in [0,1) x1

R(x1)

 x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

©Carlos Guestrin 2005-2014 8

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +

 γ3 R(x3) + γ4 R(x4) + …]
n  Discounted value of a state:

¨  value of starting from x0 and continuing with policy π from then on

n  A recursion!

©Carlos Guestrin 2005-2014 9

Simple approach for computing the
value of a policy: Iteratively

n  Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
¨  Start with some guess V0

¨  Iteratively say:
n 

¨  Stop when ||Vt+1-Vt||∞ < ε	

n  means that ||Vπ-Vt+1||∞ < ε/(1-γ)

©Carlos Guestrin 2005-2014 10

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

n  So far, told you how good a
policy is…

n  But how can we choose the
best policy???

n  Suppose there was only one
time step:
¨  world is about to end!!!
¨  select action that maximizes

reward!

©Carlos Guestrin 2005-2014 11

Unrolling the recursion

n  Choose actions that lead to best value in the long run
¨  Optimal value policy achieves optimal value V*

©Carlos Guestrin 2005-2014 12

Bellman equation

n  Evaluating policy π:

n  Computing the optimal value V* - Bellman equation

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

©Carlos Guestrin 2005-2014 13

Interesting fact – Unique value

n  Slightly surprising fact: There is only one V* that solves
Bellman equation!
¨  there may be many optimal policies that achieve V*

n  Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

©Carlos Guestrin 2005-2014 14

Solving an MDP

n  Policy iteration [Howard ‘60, Bellman ‘57]

n  Value iteration [Bellman ‘57]
n  Linear programming [Manne ‘60]
n  …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!

©Carlos Guestrin 2005-2014 15

Value iteration (a.k.a. dynamic programming) –
the simplest of all

n  Start with some guess V0

n  Iteratively say:
n 

n  Stop when ||Vt+1-Vt||∞ < ε	

¨  means that ||V*-Vt+1||∞ < ε/(1-γ)

©Carlos Guestrin 2005-2014 16

Optimal Long-term Plan

Optimal Policy: π*(x) Optimal value
function V*(x)

Optimal policy:

€

π∗(x) = argmax
a

R(x,a)+ γ P(x' | x,a)V ∗(x')
x'
∑

©Carlos Guestrin 2005-2014 17

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

S

A A

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

©Carlos Guestrin 2005-2014 18

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1
2
3
4
5
6

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

S

A A

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

©Carlos Guestrin 2005-2014 19

V t+1 (x) =max
a
R(x,a)+γ P(x ' | x,a)V t (x ')

x '
∑

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1 0 0 10 10
2 0 4.5 14.5 19
3 2.03 9.46 17.44 25.08
4 5.17 13.61 20.17 29.13
5 8.45 16.91 22.88 32.19
6 11.41 19.62 25.43 34.78
∞ 31.59 38.60 44.02 54.02

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

S

A A

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

V t+1 (x) =max
a
R(x,a)+γ P(x ' | x,a)V t (x ')

x '
∑

©Carlos Guestrin 2005-2014 20

What you need to know

n  What’s a Markov decision process
¨ state, actions, transitions, rewards
¨ a policy
¨ value function for a policy

n  computing Vπ	

n  Optimal value function and optimal policy
¨ Bellman equation

n  Solving Bellman equation
¨ with value iteration, policy iteration and linear

programming

©Carlos Guestrin 2005-2014 21

Acknowledgment

n  This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
¨ http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2014 22

Reinforcement
Learning

Machine Learning – CSE546
Carlos Guestrin
University of Washington

December 4, 2014
©Carlos Guestrin 2005-2014 23

24

The Reinforcement Learning task

World: You are in state 34.

 Your immediate reward is 3. You have possible 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

 Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.
World: You’re in state 34 (again).

 Your immediate reward is 3. You have possible 3 actions.

©Carlos Guestrin 2005-2014

25

Formalizing the (online)
reinforcement learning problem

n  Given a set of states X and actions A
¨  in some versions of the problem size of X and A unknown

n  Interact with world at each time step t:
¨ world gives state xt and reward rt
¨ you give next action at

n  Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

©Carlos Guestrin 2005-2014

26

The “Credit Assignment” Problem

Yippee! I got to a state with a big reward! But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

I’m in state 43, reward = 0, action = 2
“ “ “ 39, “ = 0, “ = 4
“ “ “ 22, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 13, “ = 0, “ = 2
“ “ “ 54, “ = 0, “ = 2
“ “ “ 26, “ = 100,

27

Exploration-Exploitation tradeoff

n  You have visited part of the state
space and found a reward of 100
¨  is this the best I can hope for???

n  Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
¨ at the risk of missing out on some

large reward somewhere
n  Exploration: should I look for a

region with more reward?
¨ at the risk of wasting my time or

collecting a lot of negative reward
©Carlos Guestrin 2005-2014

28

Two main reinforcement learning
approaches

n  Model-based approaches:
¨ explore environment, then learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
¨ use model to plan policy, MDP-style
¨ approach leads to strongest theoretical results
¨ works quite well in practice when state space is manageable

n  Model-free approach:
¨ don’t learn a model, learn value function or policy directly
¨  leads to weaker theoretical results
¨ often works well when state space is large

©Carlos Guestrin 2005-2014

29

Rmax – A model-based
approach

©Carlos Guestrin 2005-2014

30

Given a dataset – learn model

n  Dataset:

n  Learn reward function:
¨  R(x,a)

n  Learn transition model:
¨  P(x’|x,a)

Given data, learn (MDP) Representation:

©Carlos Guestrin 2005-2014

31

Planning with insufficient information

n  Model-based approach:
¨  estimate R(x,a) & P(x’|x,a)
¨  obtain policy by value or policy iteration, or linear programming
¨  No credit assignment problem!

n  learning model, planning algorithm takes care of “assigning” credit

n  What do you plug in when you don’t have enough information about a state?
¨  don’t reward at a particular state

n  plug in 0?
n  plug in smallest reward (Rmin)?
n  plug in largest reward (Rmax)?

¨  don’t know a particular transition probability?

©Carlos Guestrin 2005-2014

32

Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff

n  A state may be very hard to reach
¨ waste a lot of time trying to learn rewards and

transitions for this state
¨ after a much effort, state may be useless

n  A strong advantage of a model-based approach:
¨ you know which states estimate for rewards and

transitions are bad
¨ can (try) to plan to reach these states
¨ have a good estimate of how long it takes to get there

©Carlos Guestrin 2005-2014

33

A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

n  Optimism in the face of uncertainty!!!!
¨ heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
n  If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

n  If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
¨ R(x0,a) = Rmax
¨ P(x0|x0,a) = 1

©Carlos Guestrin 2005-2014

34

Understanding Rmax

n  With Rmax you either:
¨ explore – visit a state-action

pair you don’t know much
about

n  because it seems to have lots of
potential

¨ exploit – spend all your time
on known states

n  even if unknown states were
amazingly good, it’s not worth it

n  Note: you never know if you
are exploring or exploiting!!!

©Carlos Guestrin 2005-2014

35

Implicit Exploration-Exploitation Lemma

n  Lemma: every T time steps, either:
¨ Exploits: achieves near-optimal reward for these T-steps, or
¨ Explores: with high probability, the agent visits an unknown

state-action pair
n  learns a little about an unknown state

¨ T is related to mixing time of Markov chain defined by MDP
n  time it takes to (approximately) forget where you started

©Carlos Guestrin 2005-2014

36

The Rmax algorithm
n  Initialization:

¨  Add state x0 to MDP
¨  R(x,a) = Rmax, ∀x,a
¨  P(x0|x,a) = 1, ∀x,a
¨  all states (except for x0) are unknown

n  Repeat
¨  obtain policy for current MDP and Execute policy

¨  for any visited state-action pair, set reward function to appropriate value

¨  if visited some state-action pair x,a enough times to estimate P(x’|x,a)
n  update transition probs. P(x’|x,a) for x,a using MLE
n  recompute policy

©Carlos Guestrin 2005-2014

37

Visit enough times to estimate P(x’|x,a)?

n  How many times are enough?
¨ use Chernoff Bound!

n  Chernoff Bound:
¨ X1,…,Xn are i.i.d. Bernoulli trials with prob. θ	

¨  P(|1/n ∑i Xi - θ| > ε) ≤ exp{-2nε2}

©Carlos Guestrin 2005-2014

38

Putting it all together

n  Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ	

¨ Every T steps:

n  achieve near optimal reward (great!), or
n  visit an unknown state-action pair ! num. states and actions is

finite, so can’t take too long before all states are known

©Carlos Guestrin 2005-2014

What you need to know about RL…

n  Neither supervised, nor unsupervised learning
n  Try to learn to act in the world, as we travel

states and get rewards
n  Model-based & Model-free approaches
n  Rmax, a model based approach:

¨ Learn model of rewards and transitions
¨ Address exploration-exploitation tradeoff
¨ Simple algorithm, great in practice

©Carlos Guestrin 2005-2014 39

