Markov Decision

Processes (MDPs)

Machine Learning — CSES46
Carlos Guestrin
University of Washington

December 2, 2014

©Carlos Guestrin 2005-2014 1

"

Reinforcement Learning

training by feedback

Learning to act
" SEE———

m Reinforcement learning
m An agent
1 Makes sensor observations

1 Must select action

1 Receives rewards
m positive for “good” states
m negative for “bad” states

—

[Ng et al. '05]

©Carlos Guestrin 2005-2014 3

Markov Decision Process (MDP)

] Regresentation

m State space:
1 Joint state x of entire system

m Action space:
1 Joint action 23_{a1 a,} for all agents

m Reward function:

1 Total reward R(x,a)
m sometimes reward can depend on action

m [ransition model:

1 Dynamics of the entire system P(x’|x,a)
—

©Carlos Guestrin 2005-2014 4

Discount Factors
" S

People in economics and probabilistic decision-making do
this all the time.

The “Discounted sum of future rewards” using discount
factory” is

g—

Erew er) + Xl L
)

feward in 1 time stepy + K

y ¢ (reward in 2 time-steps) +»C~L. - 3
y 3 (reward in 3 time“;fe%s)’b, nau

Lt eigeedielh |

(infinite sum)

©Carlos Guestrin 2005-2014

Define:

VA = Expected discounted future rewards starting in state A \/4 - 2 O + X
-

VB = Expected discounted future rewards starting in state B

Ve= = o 0w ey
Vg= -« < s
Vp= - = = =«
How do we compute V,, Vg, V;, Vg, Vp ?

©Carlos Guestrin 2005-2014

, o Policy
At state X,
Policy: m(x) = a action a for all

agents

m(X,) = both peasants get wood

rrrrrrrr

m(X4) = one peasant builds
barrack, other gets gold

m(X,) = peasants get gold,
footmen attack

arlodiBUSSMIn 2005-2014 7

~Value of Policx
Expected long-

Value: V_(x) term reward
starting from x

Future rewards
discounted by y in [0,1)

Computing the value of a policy

m Discounted value of a state:
value of starting from x, and continuing with policy &t from then on

Vi(zo) = Er[R(xg) + vR(x1) + v R(z2) + v R(x3) + - -]

_ Ew[i AR ()

m A recursion! t=0

©Carlos Guestrin 2005-2014 9

Simple approach for computing the

. yalue of a policy: Iteratively

Vi(x) = R(x)+ WZP(x’ | z,a = 7(z)) Vr(a))

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
Start with some guess VY

lteratively say:
« Viti(@) — R(z)+v) P | z,a=7())Vi()

i

Stop when |[V4-V{||., <<
= means that ||V_-V4l|.. < &/(1-y)

©Carlos Guestrin 2005-2014 10

~_But we want to learn a Policy

B

0 So_far,_told you how good a »
policy is...

m But how can we choose the [pEsETan
best policy???

n(X,) = both peasants get wood

n(x4) = one peasant builds
barrack, other gets gold

m Suppose there was only one
time step: T P otman anack
world is about to end!!!

select action that maximizes
reward!

©Carlos Guestrin 2005-2014 11

Unrolling the recursion
" I

m Choose actions that lead to best value in the long run
Optimal value policy achieves optimal value V°

Vi(zo) = maxR(zo,ao) + vEaolmax R(z1) +72Ea1[ngngR(w2) + -]

©Carlos Guestrin 2005-2014 12

Bellman equation
" S

m Evaluating policy =
Vr(z) = R(z)+~) P |z,a=mn(2))Vr(2)

m Computing the optimal value V" - Bellman equation

V'(x) =max R(x,a) +)/EP(X" x,a))" (x')

Interesting fact — Unique value
"
V'(x) =max R(x,a) +)/EP(X" x,a)l"(x')

m Slightly surprising fact. There is only one V™ that solves
Bellman equation!

there may be many optimal policies that achieve V"
m Surprising fact. optimal policies are good everywhere!!!

Vos(x) > Vi(x), Vo, Vr

©Carlos Guestrin 2005-2014

Solving an MDP

Solve . .
Optimal Optimal
value V'(x) policy m*(x)

Bellman
V'(x) =max R(x,a) + yEP(x'| x,a)/ " (x")

equation

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

m Policy iteration [Howard ‘60, Bellman 57]
m \Value iteration [Bellman ‘57]
m Linear programming [Manne ‘60]

©Carlos Guestrin 2005-2014 15

Value iteration (a.k.a. dynamic programming) —

the simplest of all
" A

V*(z) = R(z,a)+v) P@E'|z,a=mn(z))V*(z)

m Start with some guess V°
m [teratively say:

s Vi) — max R(x,a) + va(a:/ |z, a)Vi(z)

i

m Stop when ||Vi,-V{l|,. < ¢
means that [|V'-V.4||.. < &/(1-y)

©Carlos Guestrin 2005-2014 16

) OEtimaI Long-term Plan
mation V00
» Optimal Policy: w'(x)

Optimal policy:
7 (X) =argmaxR(x,a) + }/EP(X'| x,a)V (x")

A simple example
"

1

You run a S
startup Poor & 172
company. Unknown | A 1/2
In every +0
state you
must 1/2
choose 1/2
1/2
between
Saving - S\ /A4
money or .
Advertising. Rich & 1/2
Unknown

+10

1/2

©Carlos Guestrin 2005-2014

Poor &

Famous | A

1/2 1

A

Rich &
Famous

+10

18

Let's compute V,(x) for our example

t | V{(PU)| V{(PF) | V{RU) | V{(RF)

O b WIN -

V#(X)=max R(x,a)+ yE Px'lx,a)V'(x")

Let's compute V,(x) for our example

V#(X)=max R(x,a)+ yE Px'lx,a)V'(x")

&
,

V{PU) | V(PF) | V{(RU) | V{(RF)
1 0 0 10 10
2 0 4.5 14.5 19
3 | 203 | 946 | 17.44 | 25.08
4 | 517 | 13.61 | 20.17 | 29.13
5 | 845 | 16.91 | 22.88 | 32.19
6 | 11.41 | 19.62 | 25.43 | 34.78
o | 31.59 | 38.60 | 44.02 | 54.02

©Carlos Guestrin 2005-2014

20

What you need to know
" J
m What's a Markov decision process
state, actions, transitions, rewards
a policy
value function for a policy
= computing V_
m Optimal value function and optimal policy
Bellman equation
m Solving Bellman equation

with value iteration, policy iteration and linear
programming

©Carlos Guestrin 2005-2014

21

Acknowledgment
" A
m [his lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:

http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2014 22

Reinforcement

Learning

Machine Learning — CSES46
Carlos Guestrin
University of Washington

December 4, 2014

©Carlos Guestrin 2005-2014 23

The Reinforcement Learning task
" S

World: You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

Robot: [I'll take action 2.
World: You are in state 77.
Your immediate reward is -7. You have possible 2 actions.

Robot I’ll take action 1.

World: You're in state 34 (again).
Your immediate reward is 3. You have possible 3 actions.

©Carlos Guegttin 2005-2014

Formalizing the (online)

reinforcement learning problem
" J
m Given a set of states X and actions A
In some versions of the problem size of X and A unknown

m Interact with world at each time step t:
world gives state x, and reward r,
you give next action a,

m Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

The “Credit Assignment” Problem
" I

I’'m in state 43, reward = 0, action =2
“ 39, © =0, “ =4
“ 22, “© =0, “ =1
21, “© =0, “ =1
“ 21, “ =0, ¢ =1
© 13, © =0, “ =2
“ 54, © =0, “ =2
‘26, “ =100,

Yippee! | got to a state with a big reward! But which of my
actions along the way actually helped me get there??

This is the Credit Assignment problem.

26

Exploration-Exploitation tradeoft
" A
m You have visited part of the state

space and found a reward of 100
s this the best | can hope for???

m Exploitation: should | stick with
what | know and find a good
policy w.r.t. this knowledge?

at the risk of missing out on some
large reward somewhere

m Exploration: should | look for a
region with more reward?

at the risk of wasting my time or
collecting a lot of negative reward

© os Guegffin 2005-2014

Two main reinforcement learning
approaches

m Model-based approaches:

explore environment, then learn model (P(x’|x,a) and R(x,a))
(almost) everywhere

use model to plan policy, MDP-style
approach leads to strongest theoretical results
works quite well in practice when state space is manageable

m Model-free approach:
don’t learn a model, learn value function or policy directly
leads to weaker theoretical results
often works well when state space is large

©Carlos Gueg&in 2005-2014

Rmax — A model-based

approach

©Carlos Guestrin 2005-2014

Given a dataset — learn model
"
Given data, learn (MDP) Representation:
m Dataset:

m Learn reward function:
o R(x,a)

m Learn transition model:

0 P(X|x,a)

©Carlos Guestin 2005-2014

Planning with insufficient information

m Model-based approach:
estimate R(x,a) & P(x’|x,a)
obtain policy by value or policy iteration, or linear programming
No credit assignment problem!
m learning model, planning algorithm takes care of “assigning” credit
m What do you plug in when you don’t have enough information about a state?

don’t reward at a particular state
m plugin 07?
m plug in smallest reward (R,,)?
m plug in largest reward (R .,)?

don’t know a particular transition probability?

©Carlos Guesttin 2005-2014

Some challenges in model-based RL 2:

Exploration-Exploitation tradeoff

m A state may be very hard to reach

waste a lot of time trying to learn rewards and
transitions for this state

after a much effort, state may be useless

m A strong advantage of a model-based approach:

you know which states estimate for rewards and
transitions are bad

can (try) to plan to reach these states
have a good estimate of how long it takes to get there

©Carlos Guesfin 2005-2014

A surprisingly simple approach for model

E)ased RL — The RmaX algOrlthm [Brafman & Tennenholtz]
B

m Optimism in the face of uncertainty!!!!
heuristic shown to be useful long before theory was done
(e.g., Kaelbling "90)
m If you don’t know reward for a particular state-action
pair, setitto R !

m If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x,!!!

R(Xp,a) = Riax
P(Xo[Xo,a) = 1

Understanding R,
=

m With R, you either:

explore — visit a state-action
pair you don’t know much

about
m because it seems to have lots of ,
potential

exploit — spend all your time
on known states

m even if unknown states were
amazingly good, it's not worth it

m Note: you never know if you
are exploring or exploiting!!!

©Carlos Guesttin 2005-2014

Implicit Exploration-Exploitation Lemma
" B

m Lemma: every T time steps, either:
Exploits: achieves near-optimal reward for these T-steps, or

Explores: with high probability, the agent visits an unknown

state-action pair
m learns a little about an unknown state

T is related to mixing time of Markov chain defined by MDP
m time it takes to (approximately) forget where you started

©Carlos Guesfin 2005-2014

The Rmax algorithm
" I

m Initialization:
Add state x,to MDP
R(x,a) = R, VX,a
P(x,lx,a) = 1, Vx,a
all states (except for x,) are unknown
m Repeat
obtain policy for current MDP and Execute policy

for any visited state-action pair, set reward function to appropriate value

if visited some state-action pair x,a enough times to estimate P(x’|x,a)
m update transition probs. P(x’|x,a) for x,a using MLE
m recompute policy

©Carlos Gue8in 2005-2014

Visit enough times to estimate P(x’|x,a)?
" J
m How many times are enough?
use Chernoff Bound!

m Chernoff Bound:

X4s--, X, are i.i.d. Bernoulli trials with prob. 0
P(|1/n 3, X - 6] > ¢) < exp{-2ne?}

Putting it all together
" A
m Theorem: With prob. at least 1-0, Rmax will reach a
e-optimal policy in time polynomial in: num. states,
num. actions, T, 1/e, 1/
Every T steps:

m achieve near optimal reward (great!), or

m Visit an unknown state-action pair ! num. states and actions is
finite, so can’t take too long before all states are known

©Carlos Gue8Bin 2005-2014

What you need to know about RL...
" JE
m Neither supervised, nor unsupervised learning

m [ry to learn to act in the world, as we travel
states and get rewards

m Model-based & Model-free approaches

m Rmax, a model based approach:

Learn model of rewards and transitions
Address exploration-exploitation tradeoff
Simple algorithm, great in practice

©Carlos Guestrin 2005-2014 39

