

Simple greedy model selection algorithm

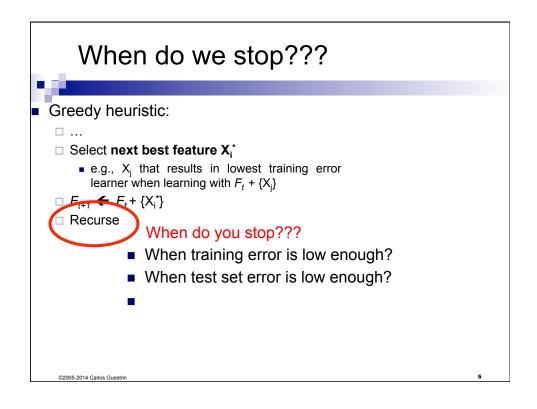
- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features $F_0 = \emptyset$
 - □ Run learning algorithm for current set of features F_t
 - Obtain *h*_t
 - ☐ Select next best feature X_i*
 - e.g., X_j that results in lowest training error learner when learning with F_t + {X_i}
 - $\Box F_{t+1} \leftarrow F_t + \{X_i^*\}$
 - □ Recurse

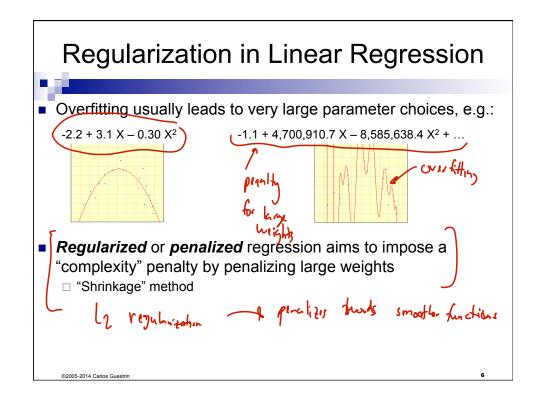
©2005-2014 Carlos Guestrin

Greedy model selection

- Applicable in many settings:
 - □ Linear regression: Selecting basis functions
 - □ Naïve Bayes: Selecting (independent) features P(X_i|Y)
 - □ Logistic regression: Selecting features (basis functions)
 - □ Decision trees: Selecting leaves to expand
- Only a heuristic!
 - □ But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin '05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there

©2005-2014 Carlos Guestria





Variable Selection by Regularization

- Ridge regression: Penalizes large weights
- What if we want to perform "feature selection"?
 - □ E.g., Which regions of the brain are important for word prediction?
 - □ Can't simply choose features with largest coefficients in ridge solution
- Try new penalty: Penalize non-zero weights
 - □ Regularization penalty:
 - □ Leads to sparse solutions
 - $\hfill\Box$ Just like ridge regression, solution is indexed by a continuous param λ
 - ☐ This simple approach has changed statistics, machine learning & electrical engineering

©2005-2014 Carlos Guestria

7

LASSO Regression

- LASSO: least absolute shrinkage and selection operator
- New objective:

©2005-2014 Carlos Guestri

8

Geometric intuition of regularized objectives in 1d

■ LASSO solution:
$$\hat{\mathbf{w}}_{LASSO} = \arg\min_{w} \sum_{j=1}^{N} \left(t(x_j) - (w_0 + \sum_{i=1}^{k} w_i h_i(x_j)) \right)^2 + \lambda \sum_{i=1}^{k} |w_i|$$

Geometric Intuition for Sparsity From Rob Tibshirani Ridge Regression Lasso slides

Optimizing the LASSO Objective

LASSO solution:
$$\hat{\mathbf{w}}_{LASSO} = \arg\min_{w} \sum_{j=1}^{N} \left(t(x_{j}) - (w_{0} + \sum_{i=1}^{k} w_{i} h_{i}(x_{j})) \right)^{2} + \lambda \sum_{i=1}^{k} |w_{i}|$$

Coordinate Descent

- Given a function F
 - □ Want to find minimum
- Often, hard to find minimum for all coordinates, but easy for one coordinate
- Coordinate descent:
- How do we pick next coordinate?
- Super useful approach for *many* problems
 - ☐ Converges to optimum in some cases, such as LASSO

Optimizing LASSO Objective One Coordinate at a Time

$$\sum_{j=1}^{N} \left(t(x_j) - (w_0 + \sum_{i=1}^{k} w_i h_i(x_j)) \right)^2 + \lambda \sum_{i=1}^{k} |w_i|$$

- Taking the derivative:
 - □ Residual sum of squares (RSS):

$$\frac{\partial}{\partial w_{\ell}}RSS(\mathbf{w}) = -2\sum_{j=1}^{N} h_{\ell}(x_j) \left(t(x_j) - (w_0 + \sum_{i=1}^{k} w_i h_i(x_j)) \right)$$

□ Penalty term:

©2005-2014 Carlos Guestri

13

Subgradients of Convex Functions

- Gradients lower bound convex functions:
- Gradients are unique at w iff function differentiable at w
- Subgradients: Generalize gradients to non-differentiable points:
 - ☐ Any plane that lower bounds function:

©2005-2014 Carlos Guestrin

14

$$\sum_{j=1}^{N} \left(t(x_j) - (w_0 + \sum_{i=1}^{k} w_i h_i(x_j)) \right)^2 + \lambda \sum_{i=1}^{k} |w_i|^2$$

$$a_{\ell} = 2 \sum_{j=1}^{N} (h_{\ell}(\mathbf{x}_j))^2$$

$$\frac{\partial}{\partial w_{\ell}} RSS(\mathbf{w}) = a_{\ell} w_{\ell} - c_{\ell}$$

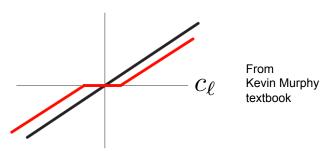
- □ If no penalty:
- Subgradient of full objective:

Setting Subgradient to 0

$$\partial_{w_{\ell}} F(\mathbf{w}) = \begin{cases} a_{\ell} w_{\ell} - c_{\ell} - \lambda & w_{\ell} < 0 \\ [-c_{\ell} - \lambda, -c_{\ell} + \lambda] & w_{\ell} = 0 \\ a_{\ell} w_{\ell} - c_{\ell} + \lambda & w_{\ell} > 0 \end{cases}$$

Soft Thresholding

$$\hat{w}_{\ell} = \begin{cases} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{cases}$$



Coordinate Descent for LASSO (aka Shooting Algorithm)

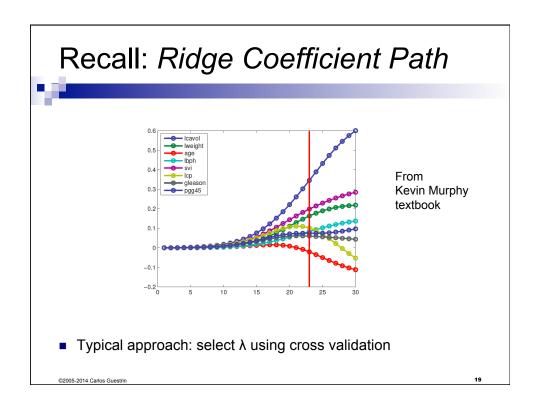
- Repeat until convergence
 - □ Pick a coordinate *l* at (random or sequentially)

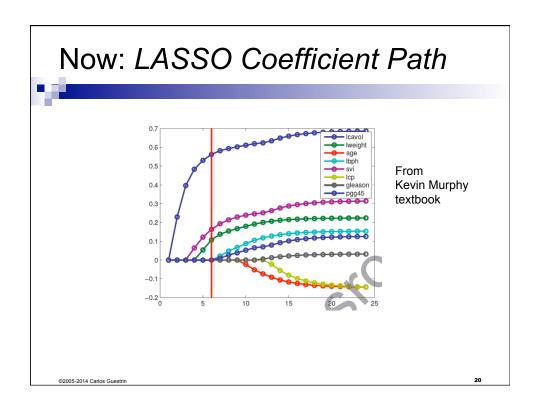
$$\hat{w}_{\ell} = \left\{ \begin{array}{ll} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{array} \right.$$

■ Where:
$$a_{\ell} = 2 \sum_{j=1}^{N} (h_{\ell}(\mathbf{x}_{j}))^{2}$$

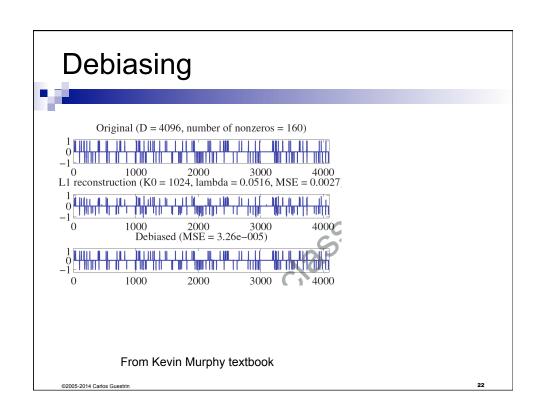
$$c_{\ell} = 2 \sum_{j=1}^{N} h_{\ell}(\mathbf{x}_{j}) \left(t(\mathbf{x}_{j}) - (w_{0} + \sum_{i \neq \ell} w_{i} h_{i}(\mathbf{x}_{j})) \right)$$

- ☐ For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - □ Least angle regression and shrinkage, Efron et al. 2004





LASSO Example					
	Term	Least Squares	Ridge	Lasso	-
	Intercept	2.465	2.452	2.468	•
	lcavol	0.680	0.420	0.533	From
	lweight	0.263	0.238	0.169	Rob Tibshirani slides
	age	-0.141	-0.046		
	lbph	0.210	0.162	0.002	
	svi	0.305	0.227	0.094	
	lcp	-0.288	0.000		
	gleason	-0.021	0.040		
	pgg45	0.267	0.133		
					-
©2005-2014 Carlos Guestrin					21



What you need to know

- Variable Selection: find a sparse solution to learning problem
- L₁ regularization is one way to do variable selection
 - □ Applies beyond regressions
 - ☐ Hundreds of other approaches out there
- LASSO objective non-differentiable, but convex → Use subgradient
- No closed-form solution for minimization → Use coordinate descent
- Shooting algorithm is very simple approach for solving LASSO

22005-2014 Carlos Guestrin