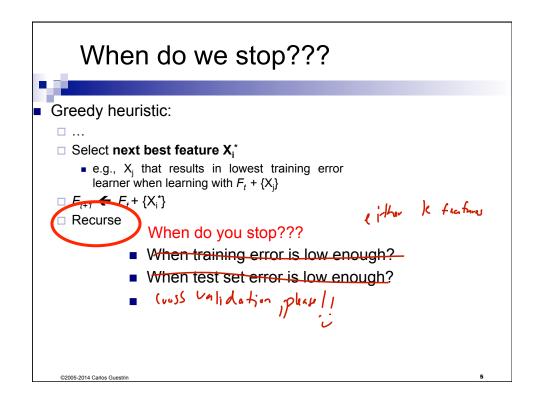
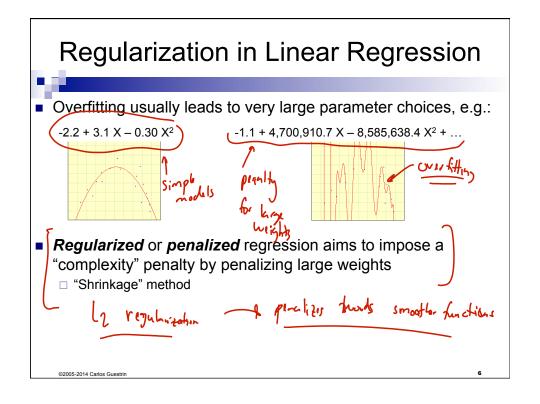


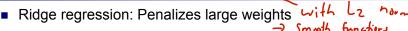
Simple greedy model selection algorithm Pick a dictionary of features e.g., polynomials for linear regression Greedy heuristic: Start from empty (or simple) set of features $F_0 = \emptyset$, or the constant two Run learning algorithm for current set of features F_t Obtain h_t Select next best feature X_i^* e.g., X_i that results in lowest training error learner when learning with $F_t + \{X_i\}$ $F_{t+1} \leftarrow F_t + \{X_i^*\}$ Recurse

Greedy model selection Applicable in many settings: Linear regression: Selecting basis functions Naïve Bayes: Selecting (independent) features P(X_i|Y) Logistic regression: Selecting features (basis functions) Decision trees: Selecting leaves to expand Only a heuristic! But, sometimes you can prove something cool about it e.g., [Krause & Guestrin '05]: Near-optimal in some settings that include Naïve Bayes There are many more elaborate methods out there





Variable Selection by Regularization



- What if we want to perform "feature selection"?
 - □ E.g., Which regions of the brain are important for word prediction?
 - □ Can't simply choose features with largest coefficients in ridge solution

- Regularization penalty: ||w|| = \(\frac{7}{2} \) ||w|| LASSO
 - □ Leads to sparse solutions
 - \Box Just like ridge regression, solution is indexed by a continuous param λ
 - □ This simple approach has changed statistics, machine learning & electrical engineering

LASSO Regression

- LASSO: least absolute shrinkage and selection operator

New objective:

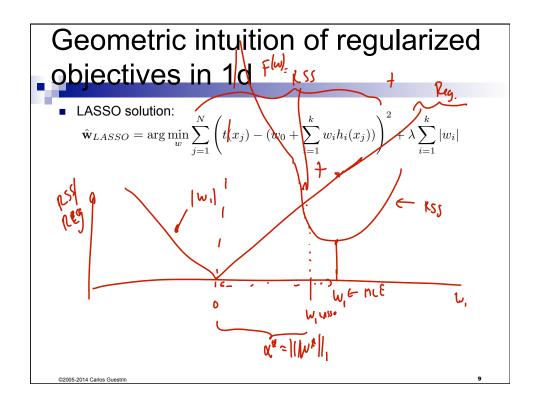
Min Z (+(xj) - (wo + Z w. h. (xj)) + 1 Z | will

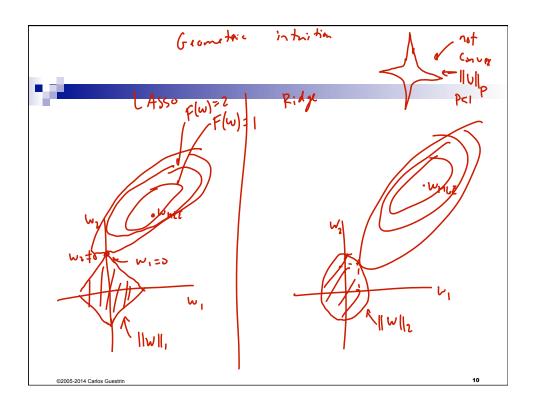
W j:1

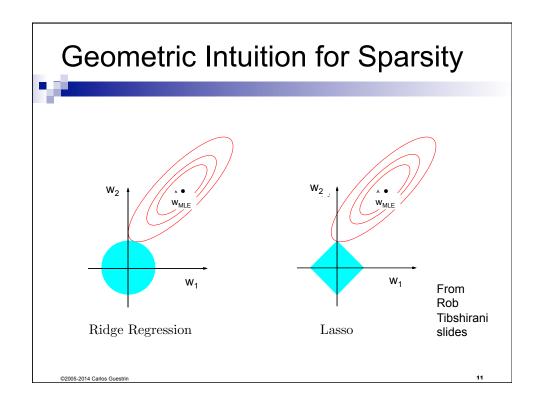
Please don't regularize

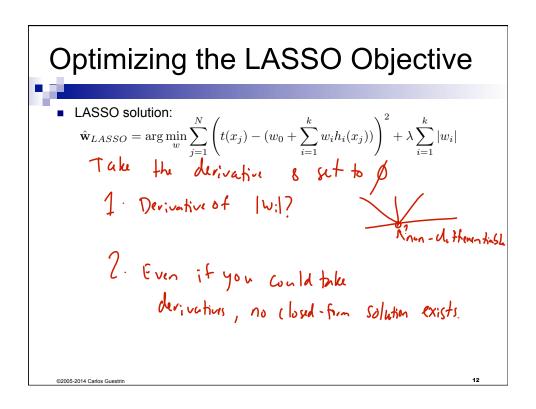
wo, it didn't do

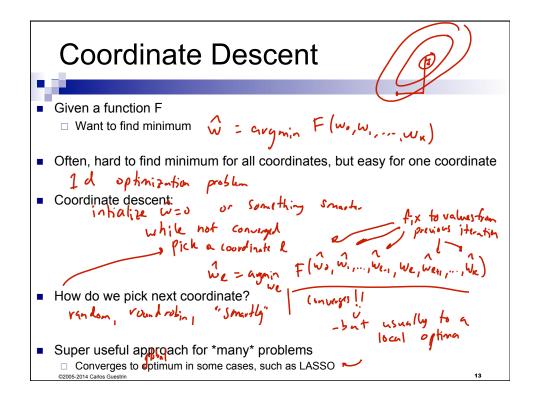
anything to you

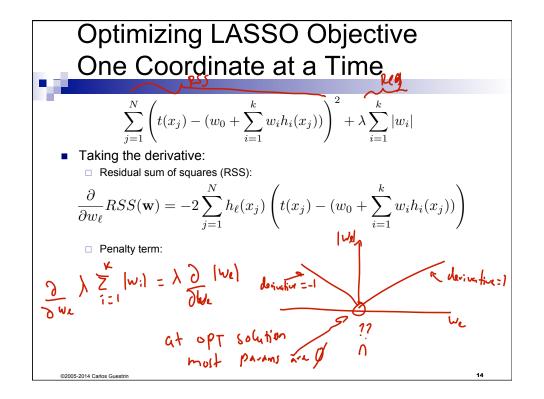












Subgradients of Convex Functions

Gradients lower bound convex functions:
$$F(w') > f(w) + \nabla F(w)^{T} (w - w)$$

Gradients are unique at w iff function differentiable at w

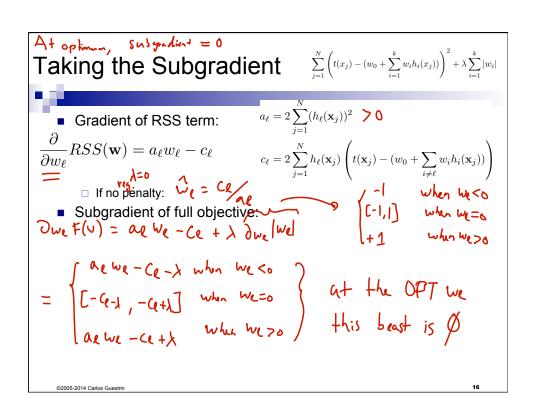
Subgradients: Generalize gradients to non-differentiable points:
$$Any plane that lower bounds function: V is a subgradient of F of w of $F(w) = F(w) = 1$

$$F(w) = F(w) = 1$$

$$F(w) = F(w) = 1$$

$$F(w) = F(w) = 1$$

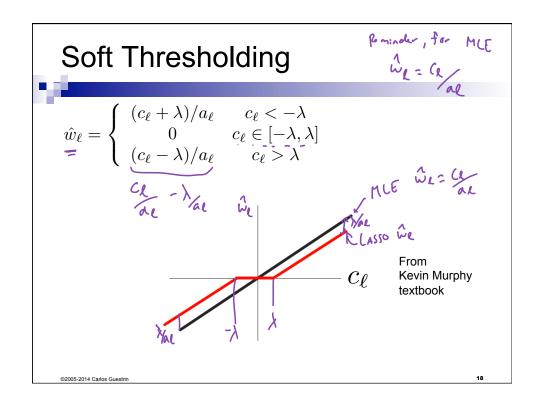
$$F(w) = 1$$$$



Setting Subgradient to 0

(hook we such that
$$0 \in \partial w_{\ell} F(\mathbf{w}) = \begin{cases} a_{\ell} w_{\ell} - c_{\ell} - \lambda & w_{\ell} < 0 \\ [-c_{\ell} - \lambda, -c_{\ell} + \lambda] & w_{\ell} = 0 \\ a_{\ell} w_{\ell} - c_{\ell} + \lambda & w_{\ell} > 0 \end{cases}$$

OPTIMEN $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ and $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ when $1 = 1 \text{ Acw}(-c_{\ell} - \lambda = 0 = 0)$ and



Coordinate Descent for LASSO (aka Shooting Algorithm)

Repeat until convergence

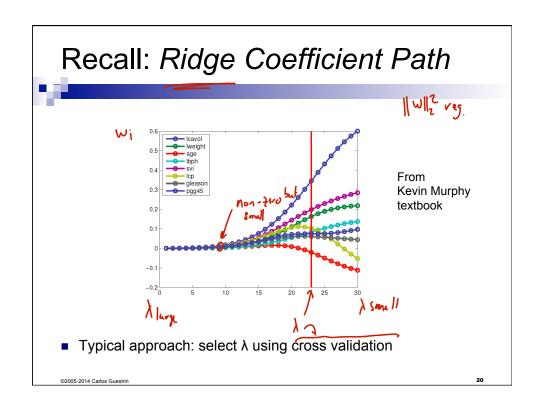
Pick a coordinate
$$\ell$$
 at (random or sequentially)

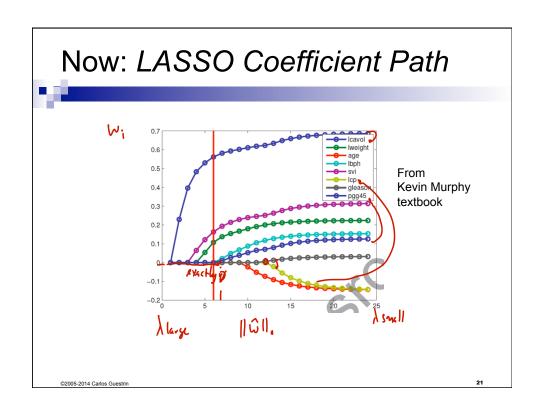
Ninimal F Set:
$$\hat{w}_{\ell} = \begin{cases} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{cases}$$

Where:
$$a_{\ell} = 2\sum_{j=1}^{N} h_{\ell}(x_{j}))^{2}$$
of all w : Ay(ι_{j}) for convergence rates, see Shalev-Shwartz and Tewari 2009

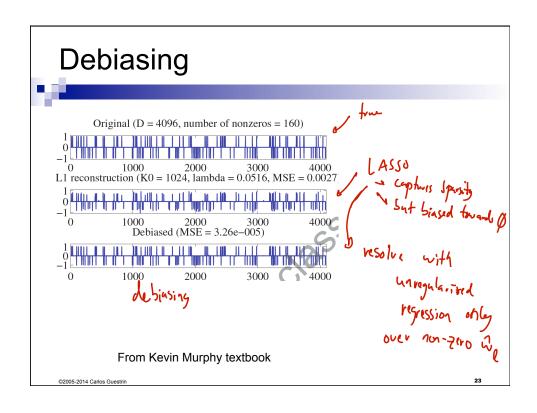
To the common technique = LARS

Least angle regression and shrinkage, Efron et al. 2004





LAS	SO Ex	ample			
_	Term	Least Squares	Ridge	Lasso	-
	Intercept	2.465	2.452	2.468	•
	lcavol	0.680	0.420	0.533	From
	lweight	0.263	0.238	0.169	Rob Tibshirani
	age	-0.141	-0.046		slides
	lbph	0.210	0.162	0.002	
	svi	0.305	0.227	0.094	
	lcp	-0.288	0.000		
	gleason	-0.021	0.040		
	pgg45	0.267	0.133		
©2005-2014 Carlos Gu	estrin				- 22



What you need to know

- Variable Selection: find a sparse solution to learning problem
- L₁ regularization is one way to do variable selection
 - □ Applies beyond regressions
 - ☐ Hundreds of other approaches out there
- LASSO objective non-differentiable, but convex → Use subgradient
- No closed-form solution for minimization → Use coordinate descent
- Shooting algorithm is very simple approach for solving LASSO

©2005-2014 Carlos Guestrin

24