

Linear Separability: More formally, Using Margin

- Data linearly separable, if there existsa vector $\exists \omega^{*} \quad\left\|\omega^{k}\right\|=1$
\square a margin $\gamma>0$
- Such that all points are at least γ away form $\omega^{*} x$
$\forall t$ if $\left.\begin{aligned} & y^{t}=+1 \\ & y^{t}=-1 \omega^{*} x^{k} \geqslant \gamma \\ & y^{k} x^{t} \leq \gamma\end{aligned} \right\rvert\, \begin{aligned} & \text { Linear Sep: } \\ & \forall t \quad y^{t} \\ & \omega^{k} x^{t} \geq \gamma\end{aligned}$

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
\square Given a sequence of labeled examples: $\left[\left(x^{\prime}, y^{\prime}\right) \ldots\left(x^{\top}, y^{\top}\right)\right]$
\square Each feature vector has bounded norm:
\square If dataset is linearly separable:

- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Doen't depend on T
Constant number of mistakes
independent of data size

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
\square No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be lid
\square Makes a fixed number of mistakes, and it's done for ever!
- Even if you see infinite data
- However, real world not(linearly separable)
\square Can't expect never to make mistakes again
\square Analysis extends to non-linearly separable case
\square Very similar bound, see Freund \& Schapire
\square Converges, but ultimately may not give good
 accuracy (make many many many mistakes)
(degree of mon-libesity

What if the data is not linearly separable?

Use features of features of features of features....
$\Phi(\mathrm{x}): R^{m} \mapsto F$
$\phi(x)=\left(\begin{array}{c}x \\ x^{2} \\ y^{3} \\ e^{x} \\ e^{\log x} \\ \vdots\end{array}\right)$
Feature space can get really large really quickly!

Higher order polynomials

num. terms $=\binom{d+m-1}{d}=\frac{(d+m-1)!}{d!(m-1)!}$

m - input features d - degree of polynomial

Karnely:
deal with a lot
high dimiver
efficintly
grows fast!
$d=6, m=100$
about 1.6 billion terms

instead x, use high dim fatuous $\varphi(x)$
 Perception Revisited $x \cdot x^{(j)}=\sum_{i=1}^{m} x_{i} x_{i}^{(j)}$

- Given weight vector $w^{(t)}$, predict point \mathbf{x} by:

$$
\hat{y}=\operatorname{sigh}\left(w^{(t)} \cdot x\right) \notin \text { mistake }
$$

- Mistake at time t : $w^{(t+1)} \notin w^{(t)}+y^{(t)} x^{(t)}$
- Thus, write weight vector in terms of mistaken data points only:
\square Let $M^{(t)}$ be time steps up to t when mistakes were made:
- Prediction rule now:
$\operatorname{sign}\left(w^{(t)} \cdot x\right)=\operatorname{sign}\left(x \cdot \sum_{j \xi^{m}(t)} y^{(j)} x^{(j)}\right)=\operatorname{sign}\left(\sum_{j \in M(t)} y^{(j)} x \cdot x^{(j)}\right)$
- When using high dimensional features:
$\operatorname{sign}\left(\phi(x) \cdot \omega^{(t)}\right)=\operatorname{sign}\left(\sum_{j \in M(t)}\right.$

$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$ polynomials of degree exactly d $d=1 \quad \phi(u) \cdot \varphi(v)=\binom{u_{1}}{u_{2}} \cdot\binom{v_{1}}{v_{2}}=u_{1} v_{1}+u_{2} v_{2}=u \cdot v$

$$
d=2 \quad \phi(u) \cdot \phi(v)=\left(\begin{array}{l}
u_{1}^{2} \\
u_{2}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1}
\end{array}\right) \cdot\left(\begin{array}{l}
v_{1}^{2} \\
v_{2}^{2} \\
v_{1} v_{2} \\
v_{2} v_{1}
\end{array}\right)=\left(u_{1} v_{1}+u_{2} v_{2}\right)^{2}=(u \cdot v)^{2}
$$

proof by single stop
of induction
for poly of degree exactly d

$$
\phi(u) \cdot \phi(v)=(u \cdot v)^{d}
$$

Finally the Kernel Trick!!! (Kernelized Perceptron)

- Every time you make a mistake, remember ($\left.x^{(t)}, y^{(t)}\right)$ G kelp list of all mistaker ever made
- Kernelized Perceptron prediction for \mathbf{x} :

$$
\begin{aligned}
\operatorname{sign}\left(\mathbf{w}^{(t)} \cdot \phi(\mathbf{x})\right) & =\sum_{j \in M^{(t)}} y^{(j)} \underbrace{\phi\left(\mathbf{x}^{(j)}\right) \cdot \phi}_{\downarrow}(\mathbf{x}) \\
& =\sum_{j \in M^{(t)}} y^{(j)} k\left(\mathbf{x}^{(j)}, \mathbf{x}\right)
\end{aligned}
$$

Polynomial kernels

- All monomials of degree d in $\mathrm{O}(\mathrm{d})$ operations:
$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}=$ polynomials of degree exactly d
- How about all monomials of degree up to d?
\square Solution 0: $\phi(u) \cdot \phi(v)=\sum_{i=0}^{n}\binom{d}{i}(u \cdot v)^{1}$
$d=2 \frac{\left.\begin{array}{l}\square \text { Better solution: } \\ (u \cdot v)^{1}+(u \cdot v)^{2}+(v \cdot u)^{1}+(y \cdot v)^{0}\end{array}\right)(u \cdot v+1)^{2}}{\text { proof by "induction" }} \quad$ For poly nomials of segued: $\quad \phi(u)$
$(u \cdot v+1)^{d} \quad 11$

Common kernels

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d} \quad \quad \text { Radial basistunctive }
$$

- Gaussian (squared exponential) kernel

$$
\begin{aligned}
& K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right) \\
& \text { maid }
\end{aligned}
$$

- Sigmoid

$$
\begin{array}{r}
\text { projecting into } \\
\\
\text { infinite dim } \\
\text { space. }
\end{array}
$$

What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proofs
- The kernel trick
- Kernelized Perceptron
- Derive polynomial kernel
- Common kernels
- In online learning, report averaged weights at the end

Your Midterm...

- Content: Everything up to last Tuesday (nearest neighbors/ decision trees)...
- Only 80mins, so arrive early and settle down quickly, we'll start and end on time
- "Open book"
\square Textbook, Books, Course notes, Personal notes
- Bring a calculator that can do \log ©
- No:
\square Computers, tablets, phones, other materials, internet devices, wireless telepathy or wandering eyes...
- The exam:
\square Covers key concepts and ideas, work on understanding the big picture, and differences between methods

Pick the one with the largest margin!

But there are many planes...

Support vector machines (SVMs)

