
1 

1 

Expectation 
Maximization 

Machine Learning – CSE546 
Carlos Guestrin 
University of Washington 
 

November 13, 2014 
©Carlos Guestrin 2005-2014 

E.M.: The General Case 
n  E.M. widely used beyond mixtures of Gaussians 

¨  The recipe is the same… 

n  Expectation Step:  Fill in missing data, given current values of 
parameters, θ(t) 
¨  If variable y is missing (could be many variables) 
¨  Compute, for each data point xj, for each value i of z: 

n  P(z=i|xj,θ(t)) 

n  Maximization step:  Find maximum likelihood parameters for (weighted) 
“completed data”: 
¨  For each data point xj, create k weighted data points 

n    

¨  Set θ(t+1) as the maximum likelihood parameter estimate for this weighted data 

n  Repeat 
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The general learning problem with 
missing data 

n  Marginal likelihood – x is observed, z is missing: 
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E-step 

n  x is observed, z is missing 
n  Compute probability of missing data given current choice of θ	



¨  Q(z|xj) for each xj  
n  e.g., probability computed during classification step 
n  corresponds to “classification step” in K-means 
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Jensen’s inequality  

n  Theorem: log ∑z P(z) f(z)  ≥  ∑z P(z) log f(z)  
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Applying Jensen’s inequality 

n  Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)  
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The M-step maximizes lower bound on 
weighted data 

n  Lower bound from Jensen’s: 

n  Corresponds to weighted dataset: 
¨  <x1,z=1> with weight Q(t+1)(z=1|x1) 
¨  <x1,z=2> with weight Q(t+1)(z=2|x1) 
¨  <x1,z=3> with weight Q(t+1)(z=3|x1) 
¨  <x2,z=1> with weight Q(t+1)(z=1|x2) 
¨  <x2,z=2> with weight Q(t+1)(z=2|x2) 
¨  <x2,z=3> with weight Q(t+1)(z=3|x2) 
¨  … 
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The M-step 

n  Maximization step: 

n  Use expected counts instead of counts: 
¨  If learning requires Count(x,z) 
¨ Use EQ(t+1)[Count(x,z)] 
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Convergence of EM 

n  Define potential function F(θ,Q): 

n  EM corresponds to coordinate ascent on F 
¨ Thus, maximizes lower bound on marginal log likelihood 
¨ We saw that M-step corresponds to fixing Q, max θ 
¨ E-step fix θ and max Q 
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What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Be happy with this kind of probabilistic analysis 
n  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 
n  EM is coordinate ascent 
n  General case for EM 
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Dimensionality reduction 

n  Input data may have thousands or millions of 
dimensions! 
¨ e.g., text data has  

n  Dimensionality reduction: represent data with 
fewer dimensions 
¨ easier learning – fewer parameters 
¨ visualization – hard to visualize more than 3D or 4D 
¨ discover “intrinsic dimensionality” of data 

n  high dimensional data that is truly lower dimensional  
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Lower dimensional projections 

n  Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features 

n  Let’s see this in the unsupervised setting  
¨  just X, but no Y 
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Linear projection and reconstruction 

x1 

x2 

project into 
1-dimension z1 

reconstruction: 
only know z1,  

     what was (x1,x2) 
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Principal component analysis – 
basic idea 
n  Project n-dimensional data into k-dimensional 

space while preserving information: 
¨ e.g., project space of 10000 words into 3-dimensions 
¨ e.g., project 3-d into 2-d 

n  Choose projection with minimum reconstruction 
error 
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Linear projections, a review 

n  Project a point into a (lower dimensional) space: 
¨ point: x = (x1,…,xd)  
¨ select a basis – set of basis vectors – (u1,…,uk) 

n  we consider orthonormal basis:  
¨  ui•ui=1, and ui•uj=0 for i≠j 

¨ select a center – x, defines offset of space  
¨ best coordinates in lower dimensional space defined 

by dot-products: (z1,…,zk), zi = (x-x)•ui 
n  minimum squared error 
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PCA finds projection that minimizes 
reconstruction error 
n  Given N data points: xi = (x1

i,…,xd
i), i=1…N 

n  Will represent each point as a projection: 

¨           where:                           and  

n  PCA: 
¨  Given k<<d, find (u1,…,uk)  
    minimizing reconstruction error: 

x1 

x2 

N 

N 

N 
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Understanding the reconstruction 
error 

¨ Given k<<d, find (u1,…,uk)  
    minimizing reconstruction error: 

N 
d 

n  Note that xi can be represented 
exactly by d-dimensional projection: 

n  Rewriting error: 
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Reconstruction error and 
covariance matrix 

N 

N 

N 
d 
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Minimizing reconstruction error and 
eigen vectors 

N 
d 

n  Minimizing reconstruction error equivalent to picking 
orthonormal basis (u1,…,ud) minimizing: 

n  Eigen vector: 

n  Minimizing  reconstruction error equivalent to picking  
(uk+1,…,ud) to be eigen vectors with smallest eigen values 
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Basic PCA algoritm 

n  Start from m by n data matrix X 
n  Recenter: subtract mean from each row of X 

¨  Xc ← X – X 
n  Compute covariance matrix: 

¨   Σ ← 1/N Xc
T Xc 

n  Find eigen vectors and values of Σ  
n  Principal components: k eigen vectors with 

highest eigen values 
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PCA example 
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PCA example – reconstruction  

only used first principal component 
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Eigenfaces [Turk, Pentland ’91] 

n  Input images: n  Principal components: 
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Eigenfaces reconstruction 

n  Each image corresponds to adding 8 principal 
components: 
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Scaling up 

n  Covariance matrix can be really big! 
¨   Σ is d by d 
¨ Say, only 10000 features 
¨  finding eigenvectors is very slow… 

n  Use singular value decomposition (SVD) 
¨  finds to k eigenvectors 
¨ great implementations available, e.g., python, R, 

Matlab svd 
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SVD 
n  Write X = W S VT 

¨  X ← data matrix, one row per datapoint 
¨  W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace  
¨  S ← singular value matrix, diagonal matrix 

n  in our setting each entry is eigenvalue λj 
¨  VT ← singular vector matrix 

n  in our setting each row is eigenvector vj 
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PCA using SVD algoritm 

n  Start from m by n data matrix X 
n  Recenter: subtract mean from each row of X 

¨  Xc ← X – X 
n  Call SVD algorithm on Xc – ask for k singular vectors 

n  Principal components: k singular vectors with highest 
singular values (rows of VT) 
¨  Coefficients become: 
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What you need to know 

n  Dimensionality reduction 
¨ why and when it’s important 

n  Simple feature selection 
n  Principal component analysis 

¨ minimizing reconstruction error 
¨  relationship to covariance matrix and eigenvectors 
¨ using SVD 
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