

The general learning problem with missing data

Marginal likelihood –
$$\mathbf{x}$$
 is observed, \mathbf{z} is missing:
$$\ell(\theta:\mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta) \qquad \text{observed} \quad \text{part}$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta) \qquad \text{observed}$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z} \in \mathcal{D}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta) \qquad \text{observed}$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z} \in \mathcal{D}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta) \qquad \text{observed}$$

E-step

- x is observed, z is missing
- Compute probability of missing data given current choice of θ^(j)
 - \square Q(**z**|**x**_i) for each **x**_i
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(\mathbf{z}^{i}|\mathbf{x}_{j}) = P(\mathbf{z}^{i}|\mathbf{x}_{j}, \theta^{(t)})$$

Garathing Otherwise justice

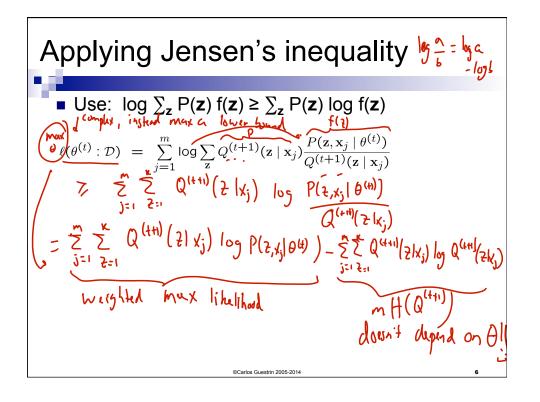
Jensen's inequality

$$\ell(\theta:\mathcal{D}) = \sum_{j=1}^{m} \log \sum_{z} P(\mathbf{z} \mid \mathbf{x}_{j}) P(\mathbf{x}_{j} \mid \theta)$$

• Theorem: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

for any concave for $f(\mathbf{z}) = f(\mathbf{z}) = f(\mathbf{z})$

$$f(\mathbf{z}) = \int_{\mathbf{z}} \log \sum_{z} P(\mathbf{z}) \log f(\mathbf{z}) \int_{\mathbf{z}} \int_{\mathbf{z}} |f(\mathbf{z})| \int_{\mathbf{z}} |f$$



The M-step maximizes lower bound on weighted data

Lower bound from Jensen's:

$$\ell(\theta^{(t)}:\mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)}) + m.H(Q^{(t+1)})$$

Corresponds to weighted dataset:

```
\neg <x<sub>1</sub>,z=1> with weight Q<sup>(t+1)</sup>(z=1|x<sub>1</sub>) 0.3 

\neg <x<sub>1</sub>,z=2> with weight Q<sup>(t+1)</sup>(z=2|x<sub>1</sub>) 0.4 

\neg <x<sub>1</sub>,z=3> with weight Q<sup>(t+1)</sup>(z=3|x<sub>1</sub>) 0.1
```

$$<\mathbf{x}_1,\mathbf{z}=2>$$
 with weight $Q^{(t+1)}(\mathbf{z}=2|\mathbf{x}_1)$
 $<\mathbf{x}_1,\mathbf{z}=3>$ with weight $Q^{(t+1)}(\mathbf{z}=3|\mathbf{x}_1)$

$$\neg < \mathbf{x}_2, \mathbf{z} = 1 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 1 | \mathbf{x}_2)$$

$$\neg < \mathbf{x}_2, \mathbf{z} = 2 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 2|\mathbf{x}_2)$$

 $\neg < \mathbf{x}_2, \mathbf{z} = 3 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 3|\mathbf{x}_2)$

©Carlos Guestrin 2005-2014

The M-step

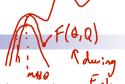
$$\ell(\theta^{(t)}:\mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}) + m.H(Q^{(t+1)})$$
aximization step:

Maximization step:

$$\underline{\theta^{(t+1)}} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta)$$

- Use expected counts instead of counts:
 - ☐ If learning requires Count(x,z)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{z})]$

Convergence of EM



Define potential function F(θ,Q):

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

- EM corresponds to coordinate ascent on F
 - □ Thus, maximizes lower bound on marginal log likelihood
 - □ We saw that M-step corresponds to fixing Q, max θ □ E-step fix θ and max Q

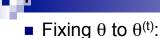
M-step is easy

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)$$

Using potential function

$$F(\theta, Q^{(t+1)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t+1)})$$

E-step also doesn't decrease potential function 1



$$\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

©Carlos Guestrin 2005-2014

11

KL-divergence

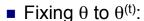
Measures distance between distributions

$$KL(Q||P) = \sum_{z} Q(z) \log \frac{Q(z)}{P(z)}$$

■ KL=zero if and only if Q=P

©Carlos Guestrin 2005-2014

E-step also doesn't decrease potential function 2



$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$
$$= \ell(\theta^{(t)}: \mathcal{D}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})\right)$$

©Carlos Guestrin 2005-201

13

E-step also doesn't decrease potential function 3

potential function 3
$$\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

- Fixing θ to $\theta^{(t)}$
- Maximizing $F(\theta^{(t)},Q)$ over $Q \rightarrow \text{set } Q$ to posterior probability:

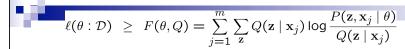
$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \leftarrow P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Note that

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

©Carlos Guestrin 2005-2014

EM is coordinate ascent



■ **M-step**: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta:\mathcal{D}) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t)})$$

E-step: Fix θ , maximize F over Q:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

□ "Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

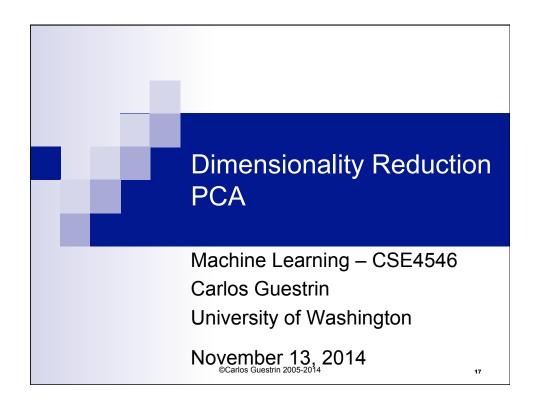
©Carlos Guestrin 2005-2014

15

What you should know

- K-means for clustering:
 - □ algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - □ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent
- General case for EM

©Carlos Guestrin 2005-2014



Dimensionality reduction Input data may have thousands or millions of dimensions! □ e.g., text data has [0,∞ word □ [0 5000000] Dimensionality reduction: represent data with fewer dimensions □ easier learning – fewer parameters □ visualization – hard to visualize more than 3D or 4D □ discover "intrinsic dimensionality" of data ■ high dimensional data that is truly lower dimensional

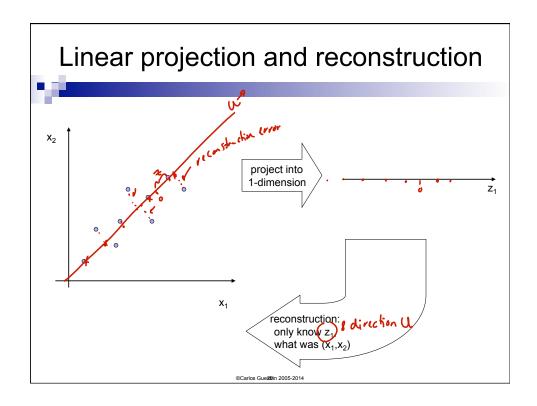
Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

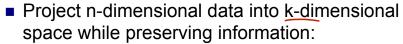
■ Let's see this in the unsupervised setting

□ just X, but no Y

©Carlos Gue**s9**in 2005-2014



Principal component analysis basic idea

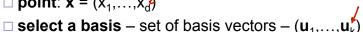


- □ e.g., project space of 10000 words into 3-dimensions
- □ e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

©Carlos Gueattin 2005-2014

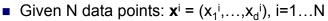
Linear projections, a review 🖳

- Project a point into a (lower dimensional) space:
 - □ point: $\mathbf{x} = (x_1, ..., x_d)$



- we consider orthonormal basis:
 - □ u_i•u_i=1, and u_i•u_i=0 for i≠j
- \square select a center $\overline{\mathbf{x}}$, defines offset of space
- □ best coordinates in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} - \mathbf{\overline{x}}) \cdot \mathbf{u}_i$
 - minimum squared error

PCA finds projection that minimizes reconstruction error

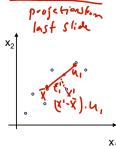


Will represent each point as a projection:

PCA:

□ Given k<<d, (ind $(\mathbf{u}_1,...,\mathbf{u}_k)$) minimizing reconstruction error:

of basis with the error
$$k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$



@Carlos Gue**20**in 2005-2014

Understanding the reconstruction

error

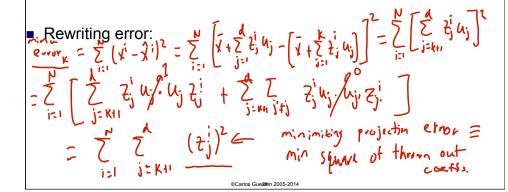
 $\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{i=1}^k z_j^i \mathbf{u}_j$ $z_i^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$

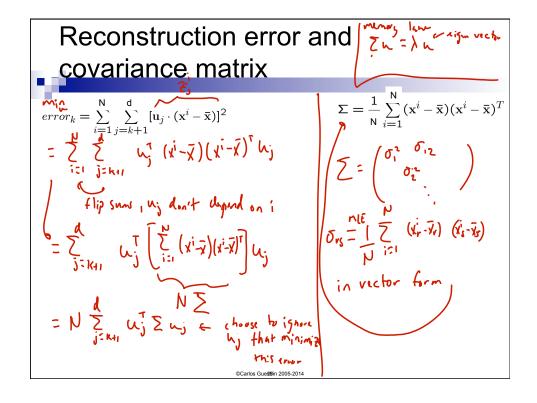
Note that xⁱ can be represented exactly by d-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^{\mathsf{d}} z^i_j \mathbf{u}_j$$

□Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$





Minimizing reconstruction error equivalent to picking orthonormal basis $(\mathbf{u}_1,...,\mathbf{u}_d)$ minimizing:

$$error_k = N \sum_{j} \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

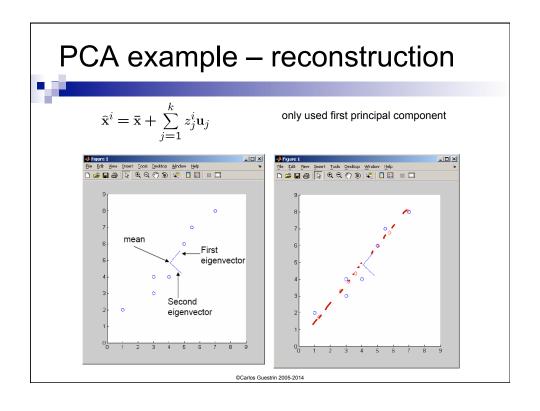
 Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_d)$ to be eigen vectors with smallest eigen values

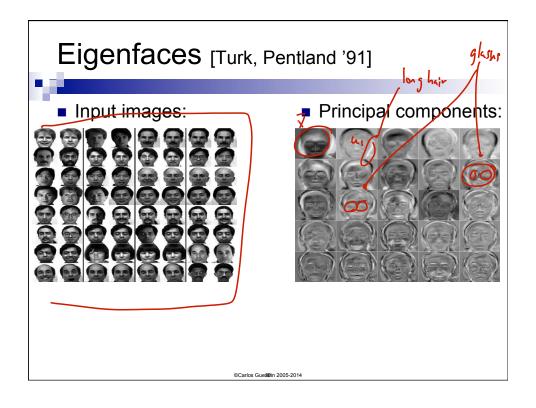
Basic PCA algoritm

- Start from m by a data
- Start from m by n data matrix X
- Compute covariance matrix:
 - $\square \quad \Sigma \leftarrow 1/N \ \mathbf{X_c}^{\mathsf{T}} \ \mathbf{X_c}$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

©Carlos Gue**30**in 2005-2014

$\hat{x}^i = \bar{x} + \sum_{j=1}^k z_j^i \mathbf{u}_j$





Eigenfaces reconstruction

Each image corresponds to adding 8 principal components:

©Carlos Gue**\$t**fin 2005-2014

Scaling up

- Covariance matrix can be really big!
 - \square Σ is d by d
 - □ Say, only 10000 features
 - ☐ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - □ finds to k eigenvectors of Z by just looking at Xc
 - □ great implementations available, e.g., python, R, Matlab svd

©Carlos Gue**92**in 2005-2014

SVD

- Write X = W S V^T
 - □ **X** ← data matrix, one row per datapoint
 - \square **W** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - □ **S** ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - $\ \ \square \ \mathbf{V}^{\mathsf{T}} \leftarrow \text{singular vector matrix}$
 - in our setting each row is eigenvector v_i

©Carlos Gue**\$6**in 2005-2014

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Call SVD algorithm on X_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of **V**^T)
 - □ Coefficients become:

©Carlos Gue**s#**in 2005-2014

What you need to know

- Dimensionality reduction
 - □ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - \square using SVD

©Carlos Gue**St**in 2005-2014