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Clustering images 

2 [Goldberger et al.] 
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K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…N} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
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(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 

©Carlos Guestrin 2005-2014 

n  Estimate a density based on x1,…,xN 

Density Estimation 

©Carlos Guestrin 2005-2014 6 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Contour Plot of Joint Density 
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Gaussians in d Dimensions 
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P(x) = 1
(2π )m/2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi|⇡, µ,⌃) =

Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Complete data labeled 
by true cluster assignments 
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)

0 0.5 1

0

0.5

1

n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 

©Carlos Guestrin 2005-2014 12 

p(xi|zi,⇡, µ,⌃) =
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Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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rik = p(zi = k|xi
,⇡, µ,⌃) =

14 

Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 

©Carlos Guestrin 2005-2014 
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n  Estimate a density based on x1,…,xN 

Summary of GMM Concept 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 

Complete data labeled 
by true cluster assignments 
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p(xi|⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi|µzi
,⌃zi)

Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1

©Carlos Guestrin 2005-2014 16 

x

i

Gaussian mixture marginal and conditional likelihood : 

p(xi|zi, µ,⌃) = N (xi|µzi
,⌃zi)

p(xi|⇡, µ,⌃) =
KX

zi=1

⇡zi
p(xi|zi, µ,⌃)
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18 

Next…   back to Density Estimation 
 
What if we want to do density estimation with 
multimodal or clumpy data? 

©Carlos Guestrin 2005-2014 
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But we don’t see class labels!!! 

n  MLE: 
¨ argmax ∏i P(zi,xi) 

n  But we don’t know zi  
n  Maximize marginal likelihood: 

¨ argmax ∏i P(xi) = argmax ∏i ∑k=1
K P(zi=k,xi) 

©Carlos Guestrin 2005-2014 

20 

Special case: spherical Gaussians 
and hard assignments 

n  If P(X|z=k) is spherical, with same σ for all classes: 

n  If each xi belongs to one class C(i) (hard assignment), marginal likelihood: 

n  Same as K-means!!! 

P(xi | zi = k)∝ exp − 1
2σ 2 x

i −µk

2#

$%
&

'(

P(xi, zi = k)
k=1

K

∑
i=1

N

∏ ∝ exp − 1
2σ 2 x

i −µC(i)

2%

&'
(

)*i=1

N

∏

P(zi = k,xi ) = 1
(2π )m/2 || Σk ||

1/2 exp −
1
2
xi −µk( )

T
Σk
−1 xi −µk( )#

$%
&

'(
P(zi = k)
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EM: “Reducing” Unsupervised 
Learning to Supervised Learning  

n  If we knew assignment of points to 
classes è Supervised Learning! 

n  Expectation-Maximization (EM) 
¨ Guess assignment of points to 

classes 
n  In standard (“soft”) EM: each point 

associated with prob. of being in each 
class 

¨ Recompute model parameters 
¨  Iterate  

©Carlos Guestrin 2005-2014 21 

Generic Mixture Models 

©Carlos Guestrin 2005-2014 22 

n  Observations: 

n  Parameters: 

n  Likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 

x

izi

MoG Example: 
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ML Estimate of Mixture Model Params 

©Carlos Guestrin 2005-2014 23 

n  Log likelihood 

 
n  Want ML estimate 

n  Neither convex nor concave and local optima 

L

x

(✓) , log p({xi} | ✓) =
X

i

log

X

z

i

p(x

i

, z

i | ✓)

✓̂ML =

©Carlos Guestrin 2005-2014 24 

n  Assume class labels     were observed in addition to   

n  Compute ML estimates 
¨  Separates over clusters k! 

n  Example: mixture of Gaussians (MoG) 

If “complete” data were observed… 

zi x

i

L

x,z

(✓) =

X

i

log p(x

i

, z

i | ✓)

✓ = {⇡k, µk,⌃k}Kk=1
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n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

n  Example: MoG (derivation soon…) 
1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. µk,⌃k :

26 

E.M. Convergence 

n  This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data 

•  EM is coordinate 
ascent on an 
interesting potential 
function 

•  Coord. ascent for 
bounded pot. func. è 
convergence to a 
local optimum 
guaranteed 

©Carlos Guestrin 2005-2014 
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Gaussian Mixture Example: Start 

©Carlos Guestrin 2005-2014 
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After first iteration 

©Carlos Guestrin 2005-2014 
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After 2nd iteration 

©Carlos Guestrin 2005-2014 
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After 3rd iteration 

©Carlos Guestrin 2005-2014 
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After 4th iteration 

©Carlos Guestrin 2005-2014 
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After 5th iteration 

©Carlos Guestrin 2005-2014 
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After 6th iteration 

©Carlos Guestrin 2005-2014 
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After 20th iteration 

©Carlos Guestrin 2005-2014 
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Some Bio Assay data 

©Carlos Guestrin 2005-2014 
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GMM clustering of the assay data 

©Carlos Guestrin 2005-2014 
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Resulting 
Density 
Estimator 

©Carlos Guestrin 2005-2014 

E.M.: The General Case 
n  E.M. widely used beyond mixtures of Gaussians 

¨  The recipe is the same… 

n  Expectation Step:  Fill in missing data, given current values of 
parameters, θ(t) 
¨  If variable y is missing (could be many variables) 
¨  Compute, for each data point xj, for each value i of y: 

n  P(y=i|xj,θ(t)) 

n  Maximization step:  Find maximum likelihood parameters for (weighted) 
“completed data”: 
¨  For each data point xj, create k weighted data points 

n    

¨  Set θ(t+1) as the maximum likelihood parameter estimate for this weighted data 

n  Repeat 
©Carlos Guestrin 2005-2013 38 



20 

©Carlos Guestrin 2005-2014 39 

n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to quality of solution in practice 

Initialization 

y

i = {zi, xi}

40 

What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Remember, E.M. can get stuck in local minima, and 
empirically it DOES 

n  EM is coordinate ascent 

©Carlos Guestrin 2005-2014 
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n  More broadly applicable than just to mixture models 
considered so far 
 

n  Model: 

 
n  Interested in maximizing (wrt    ): 

n  Special case:  

Expectation Maximization (EM) – 
Setup 

x

y

✓

✓

p(x | ✓) =
X

y

p(x, y | ✓)

x = g(y)

observable – “incomplete” data 
not (fully) observable – “complete” data 
parameters 

©Carlos Guestrin 2005-2014 42 

n  Step 1 
¨  Rewrite desired likelihood in terms of complete data terms 

n  Step 2 
¨  Assume estimate of parameters  
¨  Take expectation with respect to 

 

Expectation Maximization (EM) – 
Derivation 

p(y | ✓) = p(y | x, ✓)p(x | ✓)

✓̂
p(y | x, ✓̂)
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n  Step 3 
¨  Consider log likelihood of data at any     relative to log likelihood at       

 
n  Aside: Gibbs Inequality 
    Proof: 

 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓)� L
x

(✓̂)

Ep[log p(x)] � Ep[log q(x)]

©Carlos Guestrin 2005-2014 44 

n  Step 4 
¨  Determine conditions under which log likelihood at    exceeds that at 
Using Gibbs inequality: 
 
 
 
If  
 
Then 

 
 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓) � L
x

(✓̂)

L
x

(✓)� L
x

(✓̂) = [U(✓, ✓̂)� U(✓̂, ✓̂)]� [V (✓, ✓̂)� V (✓̂, ✓̂)]
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n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

Motivates EM Algorithm 

©Carlos Guestrin 2005-2014 46 

n  E-Step   Compute 
n  M-Step  Compute 

n  Consider            i.i.d.   
 
 
 

Example – Mixture Models 

U(✓,

ˆ

✓

(t)
) = E[log p(y | ✓) | x, ˆ✓(t)]

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))

y

i = {zi, xi}

Eqt [log p(y | ✓)] =
X

i

Eqt [log p(x
i
, z

i | ✓)] =

p(xi
, z

i | ✓) = ⇡zi
p(xi | �zi) =
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n  Bound log likelihood: 

 
 
 

©Carlos Guestrin 2005-2014 47 

Coordinate Ascent Behavior 

L
x

(✓) =

�
L
x

(✓̂(t)) =

Figure from 
KM textbook 

U(✓, ✓̂(t)) + V (✓, ✓̂(t))

U(✓̂(t), ✓̂(t)) + V (✓̂(t), ✓̂(t))

©Carlos Guestrin 2005-2014 48 

n  Since Gibbs inequality is satisfied with equality only if p=q, 
any step that changes     should strictly increase likelihood 
 

n  In practice, can replace the M-Step with increasing U instead 
of maximizing it (Generalized EM) 
 

n  Under certain conditions (e.g., in exponential family), can 
show that EM converges to a stationary point of 
 

n  Often there is a natural choice for y … has physical meaning 
 

n  If you want to choose any y, not necessarily x=g(y), replace 
        in U with   

Comments on EM 

✓

L
x

(✓)

p(y | ✓) p(y, x | ✓)
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n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}

50 

What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Be happy with this kind of probabilistic analysis 
n  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 
n  EM is coordinate ascent 

©Carlos Guestrin 2005-2014 


