

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

5. ...and jumps there

6. ...Repeat until terminated!

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{k}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots \mathrm{~N}\}$ to nearest center:
$\square C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}$
- Recenter: μ_{i} becomes centroid of its point:
$\mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}$
Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

What is K-means optimizing?

- Potential function $\mathrm{F}(\mu, \mathrm{C})$ of centers μ and point allocations C:
$\square \quad F(\mu, C)=\sum_{j=1}^{\mathrm{N}}\left\|\mu_{C(j)}-x_{j}\right\|^{2}$
- Optimal K-means:
$\square \min _{\mu} \min _{C} F(\mu, C)$

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Coordinate descent algorithms

■ $\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}$

- Want: $\min _{\mathrm{a}} \min _{\mathrm{b}} \mathrm{F}(\mathrm{a}, \mathrm{b})$
- Coordinate descent:
\square fix a, minimize b
\square fix b, minimize a
\square repeat
- Converges!!!
\square if F is bounded
\square to a (often good) local optimum
- as we saw in applet (play with it!)
(For LASSO it converged to the global optimum, because of convexity)
- K-means is a coordinate descent algorithm!

- Clusters may overlap
- Some clusters may be "wider" than others

Density Estimation

- Estimate a density based on x^{1}, \ldots, x^{N}

Density Estimation

Gaussians in d Dimensions

$$
P(\mathbf{x})=\frac{1}{(2 \pi)^{m / 2}\|\Sigma\|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right]
$$

Density as Mixture of Gaussians

- Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

$$
p\left(x^{i} \mid \pi, \mu, \Sigma\right)=
$$

Density as Mixture of Gaussians

- Approximate with density with a mixture of Gaussians

C. Bishop daattern Recognition \& Machine Learning

Clustering our Observations

- Imagine we have an assignment of each x^{i} to a Gaussian

C. Bishopsodeattern Recognition \& Machine Learning

Summary of GMM Concept

- Estimate a density based on x^{1}, \ldots, x^{N}

Summary of GMM Components

- Observations

$$
x^{i} \in \mathbb{R}^{d}, \quad i=1,2, \ldots, N
$$

- Hidden cluster labels $z_{i} \in\{1,2, \ldots, K\}, \quad i=1,2, \ldots, N$
- Hidden mixture means $\quad \mu_{k} \in \mathbb{R}^{d}, \quad k=1,2, \ldots, K$
- Hidden mixture covariances $\quad \Sigma_{k} \in \mathbb{R}^{d \times d}, \quad k=1,2, \ldots, K$
- Hidden mixture probabilities

$$
\pi_{k}, \quad \sum_{k=1}^{K} \pi_{k}=1
$$

Gaussian mixture marginal and conditional likelihood :

$$
\begin{aligned}
& p\left(x^{i} \mid \pi, \mu, \Sigma\right)=\sum_{z^{i}=1}^{K} \pi_{z^{i}} p\left(x^{i} \mid z^{i}, \mu, \Sigma\right) \\
& p\left(x^{i} \mid z^{i}, \mu, \Sigma \underset{\text { ecanos suestrin 20s } 2014}{=}\left(x^{i} \mid \mu_{z^{i}}, \Sigma_{z^{i}}\right)\right.
\end{aligned}
$$

