

Optimizing concave function — Gradient ascent \mathbf{w} alternative to coordinate ascend \mathbf{w} Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent $\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$ Update rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$ $\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$ Gradient ascent is simplest of optimization approaches $\mathbf{w}_i = \mathbf{w}_i$ $\mathbf{w}_i = \mathbf{w}_i$ Gradient ascent is simplest of optimization approaches $\mathbf{w}_i = \mathbf{w}_i$ $\mathbf{w}_i = \mathbf{w}_i$

The Cost, The Cost!!! Think about the cost...

What's the cost of a gradient update step for LR???

$$w_{i}^{(t+1)} \leftarrow w_{i}^{(t)} + \eta \left\{ -\lambda w_{i}^{(t)} + \sum_{j=1}^{N} x_{i}^{j} [y^{j} - \hat{P}(Y^{j} = 1 \mid \mathbf{x}^{j}, \mathbf{w}^{(t)})] \right\}$$

$$for i = 1 \dots k$$

$$\text{O(NK)}$$

$$\text{Path (ache } \hat{P} \text{ before loop }, \text{ then } \text{O(NK)} \text{ if } \text{N is rachly large, } \text{Slow } \dots$$

$$\text{per: teration to only take an } p$$

$$\text{sup}$$

$$\text{CCarlos Guestin 2005-2013}$$

Learning Problems as Expectations

- Minimizing loss in training data:
 - □ Given dataset: χ' , χ^2 , ..., χ'' Sampled iid from some distribution p(x) on features:
 - □ Loss function, e.g., hinge loss, logistic loss,...
 - □ We often minimize loss in training data: Surrockt loss to

$$\min_{\mathbf{w}} \mathbf{P}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{j}) - \ln P(\mathbf{y}^{j} | \mathbf{x}^{j}, \mathbf{w}) + \lambda \|\mathbf{w}\|_{2}^{2}$$

■ However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

So, we are approximating the integral by the average on the training data

©Carlos Guestrin 2005-2013

Gradient ascent in Terms of Expectations

"True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

Taking the gradient:

Taking the gradient:

$$\nabla_{w} \hat{L}(w) = \nabla_{w} \left(\mathcal{E}_{\chi} \left[\mathcal{L}(w, \chi) \right] \right) = \mathcal{E}_{\chi} \left[\nabla_{w} \mathcal{L}(w, \chi) \right]$$

"True" gradient ascent rule:

$$w^{(++1)} \leftarrow w^{(+)} - \eta \quad \mathcal{E}_{\chi} \left[\nabla_{w} \mathcal{L}(w, \chi) \right]$$

$$w^{(++1)} \leftarrow w^{(+)} - \eta \left[\chi \left[\nabla_{v} \left((v, x) \right) \right] \right]$$

©Carlos Guestrin 2005-2013

SGD: Stochastic Gradient Ascent (or Descent)

"True" gradient:

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[\nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

■ Sample based approximation: take iid Sample

Ex [Dullox)]
$$\gtrsim I \sum_{i=1}^{N} D_{i} l(w, x^{i})$$

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient $\{\chi [\nabla (w, t)] \approx \nabla_{w} ((w, x^{t}))$
 - Ext[Ow((w,xi)) = Dw ((w)
 - Called stochastic gradient ascent (or descent)
 - Among many other names

□ VERY useful in practice!!!

Stochastic Gradient Ascent for **Logistic Regression**

Logistic loss as a stochastic function:

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \lambda ||\mathbf{w}||_{2}^{2}\right]$$

Batch gradient ascent updates:

■ Stochastic gradient ascent updates: Pick a next data print

□ Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

$$0 \text{ [the field of the point of the p$$

Stochastic Gradient Ascent: general case

- □ Want to find maximum

 w* € argmin f(w) = argmin fx[f(w,x)]
- Start from $\mathbf{w}^{(0)}$ $\ell.g.$ $\mathbf{w}^{(0)} = 0$
- Repeat until convergence:
 - ☐ Get a sample data point xt
 - Update parameters:

- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model

 □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

©Carlos Guestrin 2005-2013

11

6

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - □ e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - ☐ Low variance, don't usually overfit too badly
- Simple (a.k.a. weak) learners are bad
 - ☐ High bias, can't solve hard learning problems
- Can we make weak learners always good???
 - □ No!!!
 - □ But often yes…

©Carlos Guestrin 2005-2013

Voting (Ensemble Methods)

- Output class: (Weighted) vote of each classifier
 - □ Classifiers that are most "sure" will vote with more conviction
 - □ Classifiers will be most "sure" about a particular part of the space

H(X) = Sign ($\frac{1}{2}$ dt ht(X))

Let vert classifier

(A) = Sign ($\frac{1}{2}$ dt ht(X))

Let vert classifier

(A) = $\frac{1}{4}$ if $\frac{1}{4}$ if encil has word "(SES46" $\frac{1}{2}$ no span But how do you???

- But how do you ???
 - □ force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- Qi $h_t(x^i) > 0$ =) correct (less)

 On each iteration t:

 weight each training example by how incorrectly it was classified)

 I earn a hypothesis h (x) > 1-1, +15= Y
- On each iteration *t*:
 - □ Learn a hypothesis h_t
 - $\hfill \Box$ A strength for this hypothesis α_t
- $H(x) = Sign \left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$ Final classifier:
 - Practically useful
- Theoretically interesting

©Carlos Guestrin 2005-2013

Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - \Box D(j) weight of j th training example (\mathbf{x}^{j} , \mathbf{y}^{j})
 - Interpretations:
 - *j* th training example counts as D(j) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, j th training example counts as D(j) "examples"

Why choose α_t for hypothesis h_t this way?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x^j) \neq y^j] \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-y^j f(x^j)) = \prod_{t=1}^{T} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; H(x) = sign(f(x))

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_{i}

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

Why choose α_t for hypothesis h_t this way?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

For boolean target function, this is accomplished by [Freund & Schapire '97];

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework! ©