
1

1

Stochastic Gradient
Descent

Machine Learning – CSE546
Carlos Guestrin
University of Washington

October 9, 2013
©Carlos Guestrin 2005-2013

Logistic Regression
Logistic
function
(or Sigmoid):

n  Learn P(Y|X) directly
¨  Assume a particular functional form for link

function
¨  Sigmoid applied to a linear function of the input

features:

Z

Features can be discrete or continuous!
2 ©Carlos Guestrin 2005-2013

2

Optimizing concave function –
Gradient ascent

n  Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

n  Gradient ascent is simplest of optimization approaches
¨  e.g., Conjugate gradient ascent can be much better

Gradient:

Step size, η>0

Update rule:

3 ©Carlos Guestrin 2005-2013

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε	

 For i=1,…,k,

repeat

4 ©Carlos Guestrin 2005-2013

(t)

(t)

3

The Cost, The Cost!!! Think about
the cost…

n  What’s the cost of a gradient update step for LR???

©Carlos Guestrin 2005-2013 5

(t)

Learning Problems as Expectations

n  Minimizing loss in training data:
¨  Given dataset:

n  Sampled iid from some distribution p(x) on features:

¨  Loss function, e.g., hinge loss, logistic loss,…
¨  We often minimize loss in training data:

n  However, we should really minimize expected loss on all data:

n  So, we are approximating the integral by the average on the training data
©Carlos Guestrin 2005-2013 6

`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

`D(w) =
1

N

NX

j=1

`(w,xj)

4

Gradient ascent in Terms of Expectations

n  “True” objective function:

n  Taking the gradient:

n  “True” gradient ascent rule:

n  How do we estimate expected gradient?

©Carlos Guestrin 2005-2013 7

`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

SGD: Stochastic Gradient Ascent (or Descent)

n  “True” gradient:

n  Sample based approximation:

n  What if we estimate gradient with just one sample???
¨  Unbiased estimate of gradient
¨  Very noisy!
¨  Called stochastic gradient ascent (or descent)

n  Among many other names
¨  VERY useful in practice!!!

©Carlos Guestrin 2005-2013 8

r`(w) = E
x

[r`(w,x)]

5

Stochastic Gradient Ascent for
Logistic Regression

n  Logistic loss as a stochastic function:

n  Batch gradient ascent updates:

n  Stochastic gradient ascent updates:
¨  Online setting:

©Carlos Guestrin 2005-2013 9

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Stochastic Gradient Ascent:
general case

n  Given a stochastic function of parameters:
¨  Want to find maximum

n  Start from w(0)
n  Repeat until convergence:

¨  Get a sample data point xt
¨  Update parameters:

n  Works on the online learning setting!
n  Complexity of each gradient step is constant in number of examples!
n  In general, step size changes with iterations

©Carlos Guestrin 2005-2013 10

6

What you should know…

n  Classification: predict discrete classes rather than
real values

n  Logistic regression model: Linear model
¨ Logistic function maps real values to [0,1]

n  Optimize conditional likelihood
n  Gradient computation
n  Overfitting
n  Regularization
n  Regularized optimization
n  Cost of gradient step is high, use stochastic

gradient descent

11 ©Carlos Guestrin 2005-2013

12

Boosting

Machine Learning – CSE546
Carlos Guestrin
University of Washington

October 14, 2013
©Carlos Guestrin 2005-2013

7

13

Fighting the bias-variance tradeoff

n  Simple (a.k.a. weak) learners are good
¨ e.g., naïve Bayes, logistic regression, decision stumps

(or shallow decision trees)
¨ Low variance, don’t usually overfit too badly

n  Simple (a.k.a. weak) learners are bad
¨ High bias, can’t solve hard learning problems

n  Can we make weak learners always good???
¨ No!!!
¨ But often yes…

©Carlos Guestrin 2005-2013

14

Voting (Ensemble Methods)
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
n  Output class: (Weighted) vote of each classifier

¨  Classifiers that are most “sure” will vote with more conviction
¨  Classifiers will be most “sure” about a particular part of the space
¨  On average, do better than single classifier!

n  But how do you ???
¨  force classifiers to learn about different parts of the input space?
¨  weigh the votes of different classifiers?

©Carlos Guestrin 2005-2013

8

15

Boosting
n  Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

n  On each iteration t:
¨  weight each training example by how incorrectly it was classified
¨  Learn a hypothesis – ht
¨  A strength for this hypothesis – αt

n  Final classifier:

n  Practically useful
n  Theoretically interesting

[Schapire, 1989]

©Carlos Guestrin 2005-2013

16

Learning from weighted data
n  Sometimes not all data points are equal

¨  Some data points are more equal than others
n  Consider a weighted dataset

¨  D(j) – weight of j th training example (xj,yj)
¨  Interpretations:

n  j th training example counts as D(j) examples
n  If I were to “resample” data, I would get more samples of “heavier” data points

n  Now, in all calculations, whenever used, j th training example counts as
D(j) “examples”

©Carlos Guestrin 2005-2013

9

AdaBoost
n  Initialize weights to uniform dist: D1(j) = 1/N
n  For t = 1…T

¨  Train weak learner ht on distribution Dt over the data
¨  Choose weight αt

¨  Update weights:

n  Where Zt is normalizer:

n  Output final classifier:

©Carlos Guestrin 2005-2013 17

Dt+1(j) =
Dt(j) exp(�↵ty

j
ht(x

j
))

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

Picking Weight of Weak Learner

n  Weigh ht higher if it did well on training data
(weighted by Dt):

¨ Where εt is the weighted training error:

©Carlos Guestrin 2005-2013 18

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
NX

j=1

Dt(j) [ht(x
j) 6= y

j]

10

19

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj]  1

N

NX

j=1

exp(�yjf(xj
))

20

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj]  1

N

NX

j=1

exp(�yjf(xj
)) =

TY

t=1

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

11

21

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each

iteration to minimize Zt.

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj]  1

N

NX

j=1

exp(�yjf(xj
)) =

TY

t=1

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

22

Why choose αt for hypothesis ht this way?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

You’ll prove this in your homework! J

[Schapire, 1989]

©Carlos Guestrin 2005-2013

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

