

Training set error
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

- Given a dataset (Training data)
- Choose a loss function
 - □ e.g., squared error (L₂) for regression
- Training set error: For a particular set of parameters, loss function on training data:

$$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$

Training set error as a function of model complexity

Prediction error

- ٧
- Training set error can be poor measure of "quality" of solution
- Prediction error: We really care about error over all possible input points, not just training data:

$$error_{true}(\mathbf{w}) = E_{\mathbf{x}} \left[\left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} \right]$$
$$= \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$

©2005-2013 Carlos Guestrin

Prediction error as a function of model complexity

Computing prediction error

- Computing prediction
 - □ Hard integral
 - □ May not know t(x) for every x

$$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$

- Monte Carlo integration (sampling approximation)
 - \square Sample a set of i.i.d. points $\{x_1,...,x_M\}$ from p(x)
 - □ Approximate integral with sample average

$$error_{true}(\mathbf{w}) \approx \frac{1}{M} \sum_{j=1}^{M} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

©2005-2013 Carlos Guestrir

,

Why training set error doesn't approximate prediction error?

Sampling approximation of prediction error:

$$error_{true}(\mathbf{w}) \approx \frac{1}{M} \sum_{i=1}^{M} \left(t(\mathbf{x}_{i}) - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j}) \right)^{2}$$

Training error :

$$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$

- Very similar equations!!!
 - ☐ Why is training set a bad measure of prediction error???

©2005-2013 Carlos Guestrin

Why training set error doesn't approximate prediction error?

Because you cheated!!!

Training error good estimate for a single **w**,
But you optimized **w** with respect to the training error,
and found **w** that is good for this set of samples

Training error is a (optimistically) biased estimate of prediction error

- Very similar equations!!!
 - □ Why is training set a bad measure of prediction error???

©2005-2013 Carlos Guestrin

Test set error

$$\mathbf{w}^* = \arg \min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

- Given a dataset, randomly split it into two parts:
 - □ Training data $-\{\mathbf{x}_1, ..., \mathbf{x}_{Ntrain}\}$
 - ☐ Test data {**x**₁,..., **x**_{Ntest}}
- Use training data to optimize parameters w
- Test set error: For the *final output* ŵ, evaluate the error using:

$$error_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$

©2005-2013 Carlos Guestrin

Test set error as a function of model complexity
$$\frac{1}{N_{train}} \sum_{j=1}^{N_{train}} (t(x)) \sum_{j=1}^$$

Overfitting

■ Overfitting: a learning algorithm overfits the training data if it outputs a solution w when there exists another solution w' such that:

$$[\mathit{error}_{\mathit{train}}(w) < \mathit{error}_{\mathit{train}}(w')] \wedge [\mathit{error}_{\mathit{true}}(w') < \mathit{error}_{\mathit{true}}(w)]$$

©2005-2013 Carlos Guestria

How many points to I use for training/testing?

- Very hard question to answer!
 - □ Too few training points, learned w is bad
 - ☐ Too few test points, you never know if you reached a good solution
- Bounds, such as Hoeffding's inequality can help:

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

- More on this later this quarter, but still hard to answer
- Typically:
 - ☐ If you have a reasonable amount of data, pick test set "large enough" for a "reasonable" estimate of error, and use the rest for learning
 - ☐ If you have little data, then you need to pull out the big guns...
 - e.g., bootstrapping

©2005-2013 Carlos Guestrir

13

Error estimators

$$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$

$$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$

$$error_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$

©2005-2013 Carlos Guestrin

What you need to know True error, training error, test error Never learn on the test data Never learn on the test data

Regularization in Linear Regression

Overfitting usually leads to very large parameter choices, e.g.:

-2.2 + 3.1 X - 0.30 X²

-1.1 + 4,700,910.7 X - 8,585,638.4 X² + ...

- Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights
 - □ "Shrinkage" method

©2005-2013 Carlos Guestrin

19

Ridge Regression

- Ameliorating issues with overfitting:
- New objective:

©2005-2013 Carlos Guestria

Ridge Regression in Matrix Notation

$$= \underset{\mathbf{w}}{\operatorname{arg}\min} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^{T}(\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}} + \lambda \mathbf{w}^{T} I_{0+k} \mathbf{w}$$

Minimizing the Ridge Regression Objective

©2005-2013 Carlos Guestr

Shrinkage Properties

$$\hat{\mathbf{w}}_{ridge} = (H^T H + \lambda \ I_{0+k})^{-1} H^T \mathbf{t}$$

lacksquare If orthonormal features/basis: $H^T H = I$

©2005-2013 Carlos Guestria

23

Ridge Regression: Effect of Regularization

$$\hat{\mathbf{w}}_{ridge} = \arg\min_{w} \sum_{j=1}^{N} \left(t(x_j) - (w_0 + \sum_{i=1}^{k} w_i h_i(x_j)) \right)^2 + \lambda \sum_{i=1}^{k} w_i^2$$

- Solution is indexed by the regularization parameter λ
- Larger λ
- Smaller λ
- As $\lambda \rightarrow 0$
- As λ →∞

©2005-2013 Carlos Guestrin

What you need to know...

- Regularization
 - □ Penalizes for complex models
- Ridge regression
 - □ L₂ penalized least-squares regression
 - □ Regularization parameter trades off model complexity with training error

©2005-2013 Carlos Guestrin

Test set error as a function of model complexity
$$\frac{1}{N_{train}} \sum_{j=1}^{N_{train}} (t(x_j)^{-j} - \sum_{i} w_i h_i(x_j) \sum_{j=1}^{N_{train}} (t(x_j)^{-j} - \sum_{i} w_i h_i(x_i)^{-j} - \sum_{i} w_i h_i(x_i) \sum_{j=1}^{N_{train}} (t(x_j)^{-j} - \sum_{i} w_i h_i(x_i)^{-j} - \sum_{i} w$$

How... How???????

- - How do we pick the regularization constant λ...
 - □ And all other constants in ML, 'cause one thing ML doesn't lack is constants to tune… ⊗
 - We could use the test data, but...

©2005-2013 Carlos Guestrin

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - □ D training data
 - \Box D\j training data with j th data point moved to validation set
- Learn classifier $h_{D\setminus j}$ with $D\setminus j$ dataset
- Estimate true error as squared error on predicting t(x_i):
 - □ Unbiased estimate of $error_{true}(\boldsymbol{h}_{D\setminus i})!$
 - □ Seems really bad estimator, but wait!
- LOO cross validation: Average over all data points *j*:
 - $\ \square$ For each data point you leave out, learn a new classifier $h_{D_{||}}$
 - Estimate error as: $error_{LOO} = \frac{1}{N} \sum_{j=1}^{N} \left(t(\mathbf{x}_j) h_{\mathcal{D} \backslash j}(\mathbf{x}_j) \right)^2$

©2005-2013 Carlos Guestrir

31

LOO cross validation is (almost) unbiased estimate of true error of h_D !

- When computing LOOCV error, we only use N-1 data points
 - □ So it's not estimate of true error of learning with *N* data points!
 - □ Usually pessimistic, though learning with less data typically gives worse answer
- LOO is almost unbiased!

- Great news!
 - ☐ Use LOO error for model selection!!!
 - E.g., picking λ

©2005-2013 Carlos Guestrin

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - □ Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - ☐ If you have to do for each choice of basis functions, it will take fooooooreeeve'!!!
- Solution 1: Preferred, but not usually possible
 - ☐ Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO:

(More typical) Use k-fold cross validation

- Randomly divide training data into k equal parts
 - $\square D_1,...,D_k$
- For each i
 - □ Learn classifier $h_{D \setminus D_i}$ using data point not in D_i

• k-fold cross validation error is average over data splits:

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}$$

- k-fold cross validation properties:
 - Much faster to compute than LOO
 - \square More (pessimistically) biased using much less data, only m(k-1)/k
 - □ Usually, k = 10 ②

What you need to know...

- Use cross-validation to choose magic parameters such as λ
- Leave-one-out is the best you can do, but sometimes too slow
 - ☐ In that case, use k-fold cross-validation

©2005-2013 Carlos Guestrin