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Challenge 1: Complexity of Computing 
Gradients 

©Carlos Guestrin 2005-2013 2 

(t) 



2 

Challenge 2: Data is streaming 

n  Assumption thus far: Batch data 

n  But, e.g., in click prediction for ads is a streaming data task: 
¨  User enters query, and ad must be selected: 

n  Observe xj, and must predict yj 

¨  User either clicks or doesn’t click on ad: 
n  Label yj is revealed afterwards 

¨  Google gets a reward if user clicks on ad 

 
¨  Weights must be updated for next time: 
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Online Learning Problem 

n  At each time step t: 
¨  Observe features of data point: 

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course   

¨  Make a prediction:  
n  Note: many models are possible, we focus on linear models 
n  For simplicity, use vector notation 

¨  Observe true label: 
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details 

beyond scope of course 

¨  Update model: 
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Rosenblatt 1957 

The Perceptron Algorithm [Rosenblatt ‘58, ‘62] 
n  Classification setting: y in {-1,+1} 
n  Linear model 

¨  Prediction:  
 

n  Training:  
¨  Initialize weight vector:  
¨  At each time step: 

n  Observe features: 
n  Make prediction: 
n  Observe true class: 

n  Update model:   
¨  If prediction is not equal to truth 
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Fundamental Practical Problem for All Online 
Learning Methods: Which weight vector to report? 

n  Perceptron prediction:  
n  Suppose you run online learning method and want to sell 

your learned weight vector… Which one do you sell??? 

n  Last one? 

n    

n    

n    

©Carlos Guestrin 2005-2013 7 

Choice can make a huge difference!! 
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[Freund & Schapire ’99] 
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Mistake Bounds 

n  Algorithm “pays” every time it makes a mistake: 

n  How many mistakes is it going to make? 
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Linear Separability: More formally, Using Margin  

n  Data linearly separable, if there exists 
¨ a vector 
¨ a margin  

n  Such that 
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Perceptron Analysis: Linearly Separable Case 

n  Theorem [Block, Novikoff]:  
¨  Given a sequence of labeled examples: 

¨  Each feature vector has bounded norm: 

¨  If dataset is linearly separable: 

n  Then the number of mistakes made by the online perceptron on any such sequence 
is bounded by 
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Perceptron Proof for Linearly Separable case 

n  Every time we make a mistake, we get gamma closer to w*: 
¨  Mistake at time t: w(t+1) = w(t) + y(t) x(t) 
¨  Taking dot product with w*: 
¨  Thus after m mistakes:  

n  Similarly, norm of w(t+1) doesn’t grow too fast: 
¨    

¨  Thus, after m mistakes: 

n  Putting all together: 
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||w(t+1)||2 = ||w(t)||2 + 2y(t)(w(t) · x(t)) + ||x(t)||2
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Beyond Linearly Separable Case 
n  Perceptron algorithm is super cool! 

¨  No assumption about data distribution!  
n  Could be generated by an oblivious adversary, 

no need to be iid 
¨  Makes a fixed number of mistakes, and it’s 

done for ever! 
n  Even if you see infinite data 

 
n  However, real world not linearly separable 

¨  Can’t expect never to make mistakes again 
¨  Analysis extends to non-linearly separable 

case 
¨  Very similar bound, see Freund & Schapire  
¨  Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What you need to know 

n  Notion of online learning 
n  Perceptron algorithm 
n  Mistake bounds and proof 
n  In online learning, report averaged weights at the end 
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What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨ Started from maximizing conditional log-likelihood 

n  When we discussed the Perceptron: 
¨ Started from description of an algorithm 

n  What is the Perceptron optimizing???? 
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Perceptron Prediction: Margin of 
Confidence 

Hinge Loss 

n  Perceptron prediction: 

n  Makes a mistake when:  

n  Hinge loss (same as maximizing the margin used by SVMs) 
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Minimizing hinge loss in Batch Setting 

n  Given a dataset: 

n  Minimize average hinge loss: 

n  How do we compute the gradient? 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at w iff function differentiable at w 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Subgradient of Hinge  

n  Hinge loss: 

 

n  Subgradient of hinge loss: 
¨  If  y(t) (w.x(t)) > 0: 
¨  If  y(t) (w.x(t)) < 0: 
¨  If  y(t) (w.x(t)) = 0: 
¨  In one line: 
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Subgradient Descent for Hinge Minimization 

n  Given data: 

n  Want to minimize: 

n  Subgradient descent works the same as gradient descent: 
¨  But if there are multiple subgradients at a point, just pick (any) one:  
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Perceptron Revisited 
n  Perceptron update: 

 
 

n  Batch hinge minimization update: 

n  Difference? 
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What you need to know 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
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