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Challenge 1: Complexity of Computing
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Challenge 2: Data is streaming
" JEE

m Assumption thus far: Batch data
Haw ﬁ" '{r.l\ ""ﬁm jv« flu,..

m But, e.g., in click predlctlon for ads is a streaming data task:
User enters query, and ad must be selected:

= Observe xl)and must predict yi \/ wc b it :).._'“ click on o
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User either clicks or doesn’t click on ad: ‘[i l"; I
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g Google gets a reward if user clicks on ad,
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Online Learning Problem
"

m At each time step t:
Observe features of data point:

= Note: maT/ assumptions are possible, e.g., data is iid, data i is adversarlally chosen . details beyond scope of course (h,f‘ ]
P
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Make a prediction: 3 & Sl h

= Note: many models are possible, we focus on Ilnear models

Forsl licity, use vector notation a) {‘l) n
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Observe true label: ! ? o

Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details
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Rosenblatt 1957

The Perceptron Algorithm e «

* JEEE
m Classification setting: y in {-1,+1}
m Linear model

1 Prediction: 9 - J‘jn (W“" )(M)

m Training: W® €. 0 oo veade b felhy
O Initialize weight vector:
O At each time step:
= Observe features:
= Make prediction:
= Observe true class:
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= Update model:
o If prediction is not equal to truth
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Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?
" JEE
= Perceptron prediction: {ifn (w-x)

m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???
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Choice can make a huge difference!!
"
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Mistake Bounds
" JEE
m Algorithm “pays” every time it makes a mistake:
loss fumchin  for dhis 6alin, Sl-l‘:-»j by A i

D Gy &y i

m How many mistakes is it going to make?
Wishh Loud

Linear Separability: More formally, Using Margin

m Data linearly separable, if there exists
avector 3 W' . VU=
a margin 79
m Such that «ll pmb e
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Perceptron Analysis: Linearly Separable Case

N
" Theorfam [Blgock, Novikoff]: {{U), ‘3(()) D (an, gd)

0 Given d'$equence of labeled examples:
ot iid
1 Each feature vector ha? founded norm:

[ If dataset is Iinearlyseparable W
IV, dwtllze e 9P AT o 4 Y

m  Then the number of mistakes made by the online perceptron on any such sequence

is bounded by L
(a \ wow!!
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Perceptron Proof for Linearly Separable case

% [lwWl = o
n

m Every time we make a mistake, we get gamma closer to w":

[ Mistake at time t: w(t*!) = w(t> + yO x® d)
2 DPER Wl 4 ()
"1 Taking dot product with w': wh wh) o b ( +) Y
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Beyond Linearly Separable Case
" JEE

m  Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid ~ 7

Makes a fixed number of mistakes, and it's
done for ever!

= Even if you see infinite data
T E——

m  However, real world not linearly separable
Can’t expect never to make mistakes again
Analysis extends to non-linearly separable
case
Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What you need to know
" JEE—
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proof
m In online learning, report averaged weights at the end
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What's the Perceptron
Optimizing?

Machine Learning — CSE546
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What is the Perceptron Doing???
* JEE
m WWhen we discussed logistic regression:
Started from maximizing conditional log-likelihood

het by RGO T (Ow)

m \When we discussed the Perceptron:
Started from description of an algorithm

m What is the Perceptron optimizing????




Perceptron Prediction: Margin of
nfiden mia-t @ mtd
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m Perceptron prediction: Sij" (w »()
m Makes a mistake when: o ¥ g WX 20
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m Hinge loss (same as ppaximizing the margin used by SVMs)
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Minimizing hinge loss in Batch Setting
"
= Given a dataset: “"‘3')‘._’ (s[pljn)

m  Minimize average hinge loss:
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Subgradients of Convex Functions
"

m Gradients lower bound convex functions:

o) 7 Feyt VO (W)

m Gradients are unique at w iff function differentiable at w

n Subgrad|ent‘s, Generalize gradients to non-differentiable points:

1 Any plane that lower bounds function: Ve '\7('«/)
b 1/ For ] 0 Subgradit
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Subgradient of Hinge

|
m Hinge loss; JE"’ z
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m Subgradient of hinge loss:
O I y® (w.x®) > 0: gwl -0

O If yO (wx®) <0: Vo @ = ~9X in Subgradind duad,
I YO (wx®) = 0: D0 - [-,‘,’K' 6 ¢ Yo tan P,clr. ﬁ'\J o

1 In one line:
Jhese -

Wllwnyy) = 7 (Ywxso) (~92) “% -
e~
migh e

©Carlos Guestrin 2005-2013 21

Subgradient Descent for Hinge Minimization
" JEE
= Given data: ()(', j') Ce ()(N,(jn) | wadt

Min
w
= Want to minimize:
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m Subgradient descent works the same as gradient descent:
1 But if there are multiple subgradients at a point, just pick (any) one:
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Perceptron ReV|S|ted W
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m Perceptron update: 'L
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What you need to know
" JEE

m Perceptron is optimizing hinge loss
m Subgradients and hinge loss
m (Sub)gradient decent for hinge objective
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