

Challenge 1: Complexity of Computing Gradients

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Carlos Guestrin 2005-2013

Challenge 2: Data is streaming Assumption thus far: Batch data Have all dela Libra you keen. But, e.g., in click prediction for ads is a streaming data task: User enters query, and ad must be selected: Observe xi, and must predict yi And Libra of add User either clicks or doesn't click on ad: Label yi is revealed afterwards Google gets a reward if user clicks on ad, lost many if 1(yi yi) Weights must be updated for next time: What's 1? Weights must be updated for next time: What's 1?

Fundamental Practical Problem for All Online Learning Methods: Which weight vector to report?

- Ŋ
- Perceptron prediction: (i/m (w·x))
- Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
- Last one? WIT) ? ← viry hoisey
- Randon time step? to vary noisy
- = average !! \(\hat{\pi} = \frac{1}{\tau_1} \\ \frac{1}{\tau_1} \\ \frac{1}{\tau_1} \\ \frac{1}{\tau_1} \\ \frac{1}{\tau_2} \\ \frac{1}{\tau_1} \
- · Voting or more advanced any, see readings

©Carlos Guestrin 2005-2013

Choice can make a huge difference!!

Trandom (unnorm)
last (unnorm)
avg (unnorm)
vote

Vote

[Freund & Schapire '99]

Mistake Bounds

- - Algorithm "pays" every time it makes a mistake:

■ How many mistakes is it going to make?

©Carlos Guestrin 2005-201

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - □ No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- However, real world not linearly separable
 - □ Can't expect never to make mistakes again
 - Analysis extends to non-linearly separable case
 - □ Very similar bound, see Freund & Schapire
 - Converges, but ultimately may not give good accuracy (make many many many mistakes)

©Carlos Guestrin 2005-2013

13

What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proof
- In online learning, report averaged weights at the end

©Carlos Guestrin 2005-2013

. .

What is the Perceptron Doing???

- - When we discussed logistic regression:
 - □ Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - ☐ Started from description of an algorithm
- What is the Perceptron optimizing????

©Carlos Guestrin 2005-2013

16

Subgradient of Hinge Hinge loss: Subgradient of hinge loss: If $y^{(t)}(w.x^{(t)}) > 0$: If $y^{(t)}(w.x^{(t)}) > 0$: If $y^{(t)}(w.x^{(t)}) < 0$: If $y^{(t)}(w.x^{(t)}) = 0$: If

Subgradient Descent for Hinge Minimization

- Given data: (ォ¹, ӄ¹) . . . (メ゚, ӄၿ)
- Subgradient descent works the same as gradient descent:
 - ☐ But if there are multiple subgradients at a point, just pick (any) one:

$$V^{(H)} \leftarrow V^{(H)} - \sqrt{\sum_{j=1}^{N} \mathcal{J}(v_{j}^{M} x_{j}^{N}, y_{j}^{N})}$$

$$\int_{V} (v_{j}^{M} x_{j}^{N}, y_{j}^{N}) \left(-\lambda_{j} x_{j}^{N}\right)$$

Perceptron Revisited

Perceptron update:
$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \mathbb{I}\left[y^{(t)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) \leq 0\right] y^{(t)}\mathbf{x}^{(t)}$$

Batch hinge minimization update: nishbor on point:
$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta \frac{1}{N} \sum_{i=1}^{N} \left\{ \mathbb{I}\left[y^{(i)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(i)}) \leq 0\right] y^{(i)}\mathbf{x}^{(i)} \right\}$$

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta \frac{1}{N} \sum_{i=1}^{N} \left\{ \mathbb{I}\left[y^{(i)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(i)}) \leq 0\right] y^{(i)}\mathbf{x}^{(i)} \right\}$$

Difference? with the size constant $\gamma = 1$, and we regularize the size constant $\gamma = 1$, and we regularize the size constant $\gamma = 1$.

What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

Carlos Guestrin 2005-2013

24