Boosting (almost) by hand

Magic:
$$lpha_t = rac{1}{2} \ln \left(rac{1 - \epsilon_t}{\epsilon_t}
ight)$$

- Initialize weights to uniform dist: $D_1(j) = 1/N$
- Forward on party that have high weight For t = 1...T

 - Train weak learner h_t on distribution D_t over the data. Choose weight α_t has a constant of the const Update weights:

 $Z_t = \sum_{j=1} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$

Output final classifier:

H (x) = Sign
$$\left(\sum_{i=1}^{n} x_i + f_i(x)\right)$$

(from Rob Schapire)

Whats error train here?

$$D_1(j) = \frac{1}{N} = 0.1$$

$$\epsilon_t = \sum_{j=1}^N D_t(j) \mathbb{1}[sign(h_t(x^j) \neq y^j)]$$

Whats error train here?

$$D_1(j) = \frac{1}{N} = 0.1$$

$$\epsilon_t = \sum_{j=1}^N D_t(j) \mathbb{1}[sign(h_t(x^j) \neq y^j)]$$

$$\alpha_1 = \frac{1}{2} ln(\frac{0.7}{0.3}) \approx 0.42$$

 $\epsilon_1 = 0.3$

New weights

$$D_{t+1}(j) = rac{D_t(j) \exp(-lpha_t y^j h_t(x^j))}{Z_t}$$

When is $y^{j}h_{t}(x^{j}) = 1$? When is $y^{j}h_{t}(x^{j}) = -1$?

New weights

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$$

$$D_2(right) = \frac{0.1exp(-0.42)}{Z_t} \approx 0.071$$

$$D_2(wrong) = \frac{0.1exp(0.42)}{Z_t} \approx 0.166$$

Step 2

$$\epsilon_2 = 0.071 * 3 \approx 0.21$$

$$\alpha_2 = \frac{1}{2} ln(\frac{0.79}{0.21}) \approx 0.65$$

Notice I still get 3 examples wrong, but they are worth less now.

New weights

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$$

$$D_3(small + and -) = \frac{0.071exp(-0.65)}{Z_t} \approx 0.045$$

$$D_3(medium +) = \frac{0.166exp(-0.65)}{Z_t} \approx 0.1$$

$$D_3(large -) = \frac{0.166exp(-0.65)}{Z_t} \approx 0.17$$

Step 3

$$\epsilon_3 = 0.045 * 3 \approx 0.14$$

$$\alpha_3 = \frac{1}{2}ln(\frac{0.86}{0.14}) \approx 0.92$$

Notice I still get 3 examples wrong.

Output final classifier:
$$H(x) = Sign\left(\sum_{t=1}^{T} x_t h_t(x)\right)$$

Evaluation Metrics

• 0-1 error on test set: $\sum_{j=1}^{N} 1[sign(h_t(x^j) \neq y^j]$

• 1 - (0-1 error)/N = accuracy

Accuracy is just % of test samples I get right.

 Let's say the millionaire asks you to build a classifier to identify other millionaires.

- Let's say the millionaire asks you to build a classifier to identify other millionaires.
- You build a fancy classifier, and get accuracy = 80% in some test data. Pretty good, right?

- Let's say the millionaire asks you to build a classifier to identify other millionaires.
- You build a fancy classifier, and get accuracy = 80% in some test data. Pretty good, right?
- Your competition has a O(1) classifier that has accuracy ~ 99.9%. Should the millionaire fire you right away?

- Let's say the millionaire asks you to build a classifier to identify other millionaires.
- You build a fancy classifier, and get accuracy = 80% in some test data. Pretty good, right?
- Your competition has a O(1) classifier that has accuracy ~ 99.9%. Should the millionaire fire you right away?
- His classifier just always predicts 'not millionaire'.

Confusion matrix

		Gold standard	
		X	Y
Your Result	X	true positive tp	false positive fp type I error
	Y	false negative fn type II error	true negative tn

Confusion matrix

		Gold standard	
		X	Υ
Your Result	X	true positive tp	false positive fp type I error
	Y	false negative fn type II error	true negative tn

$$accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$
 $precision = \frac{tp}{tp + fp}$

$$error = \frac{fp + fn}{tp + tn + fp + fn}$$
 $recall = \frac{tp}{tp + fn}$

Let's say the net is trying to pick only blue fish. What's the precision and the recall?

I got this figure from http://www.lucidatainc.com/2012/10/recall-and-precision-understanding-relevancy-inediscovery/

Let's say the net is trying to pick only blue fish. What's the precision and the recall?

P = 1/4

R = 1/5

I got this figure from http://www.lucidatainc.com/2012/10/recall-and-precision-understanding-relevancy-inediscovery/

Let's say the net is trying to pick only red fish. What's the precision and the recall?

I got this figure from http://www.lucidatainc.com/2012/10/recall-and-precision-understanding-relevancy-inediscovery/

Let's say the net is trying to pick only red fish. What's the precision and the recall?

P = 3/4

R = 3/5

I got this figure from http://www.lucidatainc.com/2012/10/recall-and-precision-understanding-relevancy-inediscovery/

A single metric?

- F1 = 2 * precision * recall
 precision + recall
- Fbeta
- AUC
- ...

Our millionaire identification scenario?

Spam classification

Medical classifier: Y = (operate, don't operate)

Search engine: query = legal

- Search engine: query = "Husky football"
- By the way: why does google show more than 1 page?

- It depends on the task
- Is there imbalance?
- Are the misclassification costs the same?
- ...
- •
- Think about evaluation when doing your projects!