Perceptron, Kernels, and SVM

CSE 546 Recitation
November 5, 2013

Grading Update

Midterms: likely by Monday

- Expected average is 60%
HW 2. after midterms are graded

Project proposals: mostly or all graded (everyone gets full
credit)

— Check your dropbox for comments

HW 3 scheduled to be released tomorrow, due in two
weeks

Perceptron Basics

Online algorithm
Linear classifier
Learns set of weights
witt « wt + yt—l—l t+1]1(sign(xt+1 _wt) o yt—l—l)

Always converges on linearly separable data

What does perceptron optimize?

* Perceptron appears to work, but is it solving an
optimization problem like every other algorithm?

e yw-x <0 Is equivalent to making a mistake

* Hinge loss penalizes mistakes by
l(w,x,y) =0if yw-x >0
l(w,z,y) =—yw- -z if yw -z <0

(o8 T

Hinge Loss

N
o1 . 1 . .
mlanE:1l(w,g;J,y3) =~ E :(_ij.xJ)Jr

 Gradient descent update rule:
N

witt — wt +n= Zyzaﬂﬂyw .x" <0)
7,1

e Stochastic gradient descent update rule = perceptron:
wt—l—l . ’LUt e yt+1$t+1ﬂ(yt+lwt] le‘t—H S O)

Feature Maps

 What if data aren't linearly separable?

« Sometimes if we map features to new spaces, we can put the data
In a form more amenable to an algorithm, e.g. linearly separable

The maps could
have extremely high or
even Infinite dimension,
So is there a shortcut to
represent them?

- Don't want to store
every ¢(x) or do
computation in high
dimensions

Kernel Trick

« Kernels (aka kernel functions) represent dot products of
mapped features in same dimension as original features

- Apply to algorithms that only depend on dot product
* k(u,v) = é(u) - o(v)

- Lower dimension for computation

— Don't have to store ¢(z) explicitly

 Choose mappings that have kernels, since not all do
_ g, O((x1,12)) = (27, V2213, 23)
d(x) - d(y) = 21yi + 25 + Y3 + 22151222 = (T1y1 + T2y2)°
= (- y)

Kernelized Perceptron

Recall perceptron update rule:
wt—i—l — w i yt—l—l t_l_lI[(S?:gn(ZCt_l_l . wt—i—l) # yt—l—l)

- Implies: ,,t — Z y'" Where MAtis mistake indices
up to t
reM?

Classification rule: ; — sign(w? = sign Z y' (z" - x)

With mapping ¢ : §= szgn((a?))
= sign(> y'((2)))

If have kernel k(u,v) = gb(u) : gb(v) .

§ = sign(w' - x) = sign(Y y'k(z’, z))
1EM?

SVM Basics

» Linear classifier (without kernels)
e Find separating hyperplane by maximizing margin
* One of the most popular and robust classifiers

[n-'ij MJJ-\ "

Setting Up SVM Optimization

 Weights w and margin~y

max
. WL, Wh

v (w-x? +wg) >v,Vje{l,...,N}

- Optimization unbounded

» Use canonical hyperplanes to

remedy
-y = 1/]jw|
 |f linearly separable data, can solve

min |[Ju[3
»Wo

yj(w-xj+wn)Elj‘;’je{l,...jN}

SVM Optimization

 |f non-linearly separable data, could map to new space

- But doesn't guarantee separability
* Therefore, remove separability constraints
v (w27 4+ wp) > 1
and instead penalize the violation in the objective

N
min [w]|3 +C Y (1 -y’ (w27 +wo))+
j=1

- Soft-margin SVM minimizes reqgularized hinge loss

SVM vs Perceptron

e SVM

N
min [[w]|3 +C Y (1 -y’ (w27 +wp))+
j=1

has almost same goal as L2-regularized perceptron

 Perceptron N | |
minz (=" (w2 + wo))+
j=1

Other SVM Comments

e C>0is “soft margin”

- High C means we care more about getting a good
separation

- Low C means we care more about getting a large
margin

 How to implement SVM?

- Suboptimal method is SGD (see HW 3)

- More advanced methods can be used to employ the
kernel trick

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

