

- Reinforcement learning
- An agent
 - □ Makes sensor observations
 - Must select action
 - □ Receives rewards
 - positive for "good" states
 - negative for "bad" states

[Ng et al. '05]

©Carlos Guestrin 2005-2013

30

Markov Decision Process (MDP) Representation

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - □ Total reward R(x,a)
 - sometimes reward can depend on action
- Transition model:
 - □ Dynamics of the entire system P(x'|x,a)

©Carlos Guestrin 2005-2013

Discount Factors

People in economics and probabilistic decision-making do this all the time.

The "Discounted sum of future rewards" using discount factor γ " is

```
(reward now) + \gamma (reward in 1 time step) + \gamma^2 (reward in 2 time steps) + \gamma^3 (reward in 3 time steps) + \vdots (infinite sum)
```

©Carlos Guestrin 2005-2013

Computing the value of a policy

$$V_{\pi}(\mathbf{x_0}) = \mathbf{E_{\pi}}[R(\mathbf{x_0}) + \gamma R(\mathbf{x_1}) + \gamma^2 R(\mathbf{x_2}) + \gamma^3 R(\mathbf{x_3}) + \gamma^4 R(\mathbf{x_4}) + \dots]$$

- Discounted value of a state:
 - $\ \square$ value of starting from x_0 and continuing with policy π from then on

$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$

$$= E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$$

A recursion!

©Carlos Guestrin 2005-201

--

Simple approach for computing the value of a policy: Iteratively

value of a policy: Iteratively
$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - □ Start with some guess V⁰
 - □ Iteratively say:

•
$$V_{\pi}^{t+1}(x) \leftarrow R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}^{t}(x')$$

- □ Stop when $||V_{t+1}-V_t||_{\infty} < \varepsilon$
 - means that $||V_{\pi}-V_{t+1}||_{\infty} < \varepsilon/(1-\gamma)$

©Carlos Guestrin 2005-2013

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - $\hfill\Box$ Optimal value policy achieves optimal value V^{\star}

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2) + \cdots]]$$

©Carlos Guestrin 2005-2013

Bellman equation

Evaluating policy π:

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©Carlos Guestrin 2005-201

40

Optimal Long-term Plan

Optimal value function V*(x)

Optimal Policy: $\pi^*(\mathbf{x})$

Optimal policy:

$$\pi^*(\mathbf{x}) = \underset{a}{\operatorname{argmax}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©Carlos Guestrin 2005-2013

Interesting fact – Unique value

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Slightly surprising fact: There is only one V* that solves Bellman equation!
 - ☐ there may be many optimal policies that achieve V*
- Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \geq V_{\pi}(x), \ \forall x, \ \forall \pi$$

©Carlos Guestrin 2005-2013

42

Solving an MDP

Solve Bellman equation

Optimal policy π*(**x**)

 $V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]
- ...

©Carlos Guestrin 2005-2013

Value iteration (a.k.a. dynamic programming) – the simplest of all

- Start with some guess V⁰
- Iteratively say:

$$V^{t+1}(x) \leftarrow \max_{a} R(x,a) + \gamma \sum_{x'} P(x' \mid x,a) V^{t}(x')$$

■ Stop when $||V_{t+1}-V_t||_{\infty} < \varepsilon$ □ means that $||V^*-V_{t+1}||_{\infty} < \varepsilon/(1-\gamma)$

©Carlos Guestrin 2005-2013

What you need to know

- What's a Markov decision process
 - □ state, actions, transitions, rewards
 - □ a policy
 - □ value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - □ Bellman equation
- Solving Bellman equation
 - □ with value iteration, policy iteration and linear programming

©Carlos Guestrin 2005-2013

48

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2013