

The Reinforcement Learning task

World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

©Carlos Gue**20**in 2005-201

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - □ in some versions of the problem size of **X** and **A** unknown
- Interact with world at each time step t:
 - \square world gives state \mathbf{x}_t and reward \mathbf{r}_t
 - □ you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

©Carlos Guestin 2005-2013

The "Credit Assignment" Problem


```
I'm in state 43, reward = 0, action = 2

" " " 39, " = 0, " = 4

" " 22, " = 0, " = 1

" " 21, " = 0, " = 1

" " 21, " = 0, " = 1

" " 13, " = 0, " = 2

" " 54, " = 0, " = 2

" " 26. " = 100,
```

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.

25

Exploration-Exploitation tradeoff

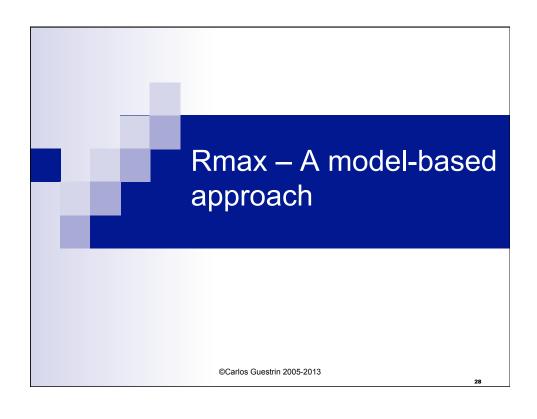
- You have visited part of the state space and found a reward of 100
 - □ is this the best I can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - □ at the risk of missing out on some large reward somewhere
- Exploration: should I look for a region with more reward?
 - □ at the risk of wasting my time or collecting a lot of negative reward

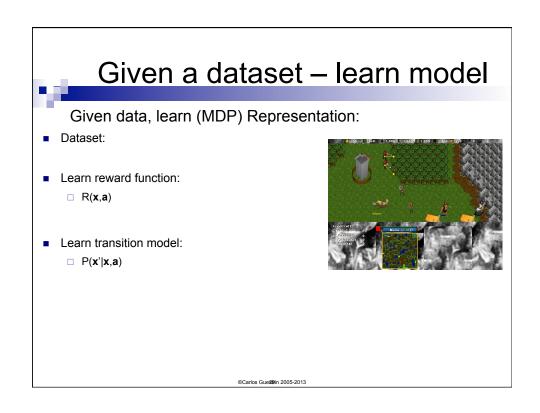
©Carlos Guestin 2005-2013

Two main reinforcement learning approaches

- Model-based approaches:
 - \square explore environment, then learn model (P(x'|x,a) and R(x,a)) (almost) everywhere
 - □ use model to plan policy, MDP-style
 - □ approach leads to strongest theoretical results
 - □ works quite well in practice when state space is manageable
- Model-free approach:
 - □ don't learn a model, learn value function or policy directly
 - □ leads to weaker theoretical results
 - □ often works well when state space is large

©Carlos Gue**20**in 2005-201





Planning with insufficient information

- Model-based approach:
 - □ estimate R(x,a) & P(x'|x,a)
 - □ obtain policy by value or policy iteration, or linear programming
 - □ No credit assignment problem!
 - learning model, planning algorithm takes care of "assigning" credit
- What do you plug in when you don't have enough information about a state?
 - □ don't reward at a particular state
 - plug in 0?
 - plug in smallest reward (R_{min})?
 - plug in largest reward (R_{max})?
 - don't know a particular transition probability?

©Carlos Gue**st**in 2005-2013

Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - □ waste a lot of time trying to learn rewards and transitions for this state
 - □ after a much effort, state may be useless
- A strong advantage of a model-based approach:
 - □ you know which states estimate for rewards and transitions are bad
 - □ can (try) to plan to reach these states
 - □ have a good estimate of how long it takes to get there

©Carlos Gue**st**fin 2005-201

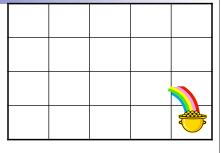
A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

- Optimism in the face of uncertainty!!!!
 - □ heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)
- If you don't know reward for a particular state-action pair, set it to R_{max}!!!
- If you don't know the transition probabilities P(x'|x,a) from some some state action pair x,a assume you go to a magic, fairytale new state x₀!!!
 - $\square R(\mathbf{x}_0, \mathbf{a}) = R_{\text{max}}$
 - $\square P(\mathbf{x}_0|\mathbf{x}_0,\mathbf{a}) = 1$

©Carlos Gue**92**in 2005-2013

Understanding R_{max}

- With R_{max} you either:
 - explore visit a state-action pair you don't know much about
 - because it seems to have lots of potential
 - exploit spend all your time on known states
 - even if unknown states were amazingly good, it's not worth it
- Note: you never know if you are exploring or exploiting!!!



©Carlos Gue**90**in 2005-201

Implicit Exploration-Exploitation Lemma

- Lemma: every T time steps, either:
 - □ Exploits: achieves near-optimal reward for these T-steps, or
 - □ Explores: with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
 - ☐ T is related to *mixing time* of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started

©Carlos Gue**\$#**in 2005-2013

The Rmax algorithm

Initialization:

- □ Add state x₀ to MDP
- \square R(x,a) = R_{max}, \forall x,a
- \square P($\mathbf{x}_0 | \mathbf{x}, \mathbf{a}$) = 1, $\forall \mathbf{x}, \mathbf{a}$
- \square all states (except for \mathbf{x}_0) are **unknown**
- Repeat
 - obtain policy for current MDP and Execute policy
 - □ for any visited state-action pair, set reward function to appropriate value
 - \Box if visited some state-action pair **x**,**a** enough times to estimate P(**x**'|**x**,**a**)
 - update transition probs. P(x'|x,a) for x,a using MLE
 - recompute policy

©Carlos Gue**st**in 2005-201

Visit enough times to estimate P(x'|x,a)?

- How many times are enough?
 - □ use Chernoff Bound!
- Chernoff Bound:
 - $\square X_1,...,X_n$ are i.i.d. Bernoulli trials with prob. θ
 - \Box P($|1/n \sum_{i} X_{i} \theta| > \varepsilon$) $\leq \exp\{-2n\varepsilon^{2}\}$

©Carlos Gue**\$6**in 2005-20

Putting it all together

- **Theorem**: With prob. at least 1-δ, Rmax will reach a ε-optimal policy in time polynomial in: num. states, num. actions, T, 1/ε, 1/δ
 - □ Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair! num. states and actions is finite, so can't take too long before all states are known

©Carlos Gue**\$0** in 2005-2013

What you need to know about RL...

- Neither supervised, nor unsupervised learning
- Try to learn to act in the world, as we travel states and get rewards
- Model-based & Model-free approaches
- Rmax, a model based approach:
 - ☐ Learn model of rewards and transitions
 - □ Address exploration-exploitation tradeoff
 - □ Simple algorithm, great in practice

©Carlos Guestrin 2005-2013

38