
1

Markov Decision
Processes (MDPs)

Machine Learning – CSE546
Carlos Guestrin
University of Washington

December 2, 2013
©Carlos Guestrin 2005-2013 1

Markov Decision Process (MDP)
Representation

n  State space:
¨  Joint state x of entire system

n  Action space:
¨  Joint action a= {a1,…, an} for all agents

n  Reward function:
¨  Total reward R(x,a)

n  sometimes reward can depend on action

n  Transition model:
¨  Dynamics of the entire system P(x’|x,a)

©Carlos Guestrin 2005-2013 2

2

Discount Factors

People in economics and probabilistic decision-making do
this all the time.	

The “Discounted sum of future rewards” using discount
factor γ” is

 (reward now) +
 γ (reward in 1 time step) +
 γ 2 (reward in 2 time steps) +
 γ 3 (reward in 3 time steps) +
 :
 : (infinite sum)

©Carlos Guestrin 2005-2013 3

The Academic Life

 Define:
 VA = Expected discounted future rewards starting in state A
 VB = Expected discounted future rewards starting in state B
 VT = “ “ “ “ “ “ “ T
 VS = “ “ “ “ “ “ “ S

 VD = “ “ “ “ “ “ “ D

 How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.
Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

©Carlos Guestrin 2005-2013 4

3

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

©Carlos Guestrin 2005-2013 5

Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
 γ3 R(x3) + γ4 R(x4) + …]

Future rewards
discounted by γ in [0,1) x1

R(x1)

 x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

©Carlos Guestrin 2005-2013 6

4

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +

 γ3 R(x3) + γ4 R(x4) + …]
n  Discounted value of a state:

¨  value of starting from x0 and continuing with policy π from then on

n  A recursion!

©Carlos Guestrin 2005-2013 7

Simple approach for computing the
value of a policy: Iteratively

n  Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
¨  Start with some guess V0

¨  Iteratively say:
n 

¨  Stop when ||Vt+1-Vt||∞ < ε	

n  means that ||Vπ-Vt+1||∞ < ε/(1-γ)

©Carlos Guestrin 2005-2013 8

5

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

n  So far, told you how good a
policy is…

n  But how can we choose the
best policy???

n  Suppose there was only one
time step:
¨  world is about to end!!!
¨  select action that maximizes

reward!

©Carlos Guestrin 2005-2013 9

Unrolling the recursion

n  Choose actions that lead to best value in the long run
¨  Optimal value policy achieves optimal value V*

©Carlos Guestrin 2005-2013 10

6

Bellman equation

n  Evaluating policy π:

n  Computing the optimal value V* - Bellman equation

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

©Carlos Guestrin 2005-2013 11

Optimal Long-term Plan

Optimal Policy: π*(x) Optimal value
function V*(x)

Optimal policy:

€

π∗(x) = argmax
a

R(x,a)+ γ P(x' | x,a)V ∗(x')
x'
∑

©Carlos Guestrin 2005-2013 12

7

Interesting fact – Unique value

n  Slightly surprising fact: There is only one V* that solves
Bellman equation!
¨  there may be many optimal policies that achieve V*

n  Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

©Carlos Guestrin 2005-2013 13

Solving an MDP

n  Policy iteration [Howard ‘60, Bellman ‘57]

n  Value iteration [Bellman ‘57]
n  Linear programming [Manne ‘60]
n  …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!

©Carlos Guestrin 2005-2013 14

8

Value iteration (a.k.a. dynamic programming) –
the simplest of all

n  Start with some guess V0

n  Iteratively say:
n 

n  Stop when ||Vt+1-Vt||∞ < ε	

¨  means that ||V*-Vt+1||∞ < ε/(1-γ)

©Carlos Guestrin 2005-2013 15

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

A A

S

A A

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

©Carlos Guestrin 2005-2013 16

9

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1
2
3
4
5
6

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

A A

S

A A

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

©Carlos Guestrin 2005-2013 17

V t+1 (x) =max
a
R(x,a)+γ P(x ' | x,a)V t (x ')

x '
∑

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1 0 0 10 10
2 0 4.5 14.5 19
3 2.03 9.46 17.44 25.08
4 5.17 13.61 20.17 29.13
5 8.45 16.91 22.88 32.19
6 11.41 19.62 25.43 34.78
∞ 31.59 38.60 44.02 54.02

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

A A

S

A A

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

V t+1 (x) =max
a
R(x,a)+γ P(x ' | x,a)V t (x ')

x '
∑

©Carlos Guestrin 2005-2013 18

10

What you need to know

n  What’s a Markov decision process
¨ state, actions, transitions, rewards
¨ a policy
¨ value function for a policy

n  computing Vπ	

n  Optimal value function and optimal policy
¨ Bellman equation

n  Solving Bellman equation
¨ with value iteration, policy iteration and linear

programming

©Carlos Guestrin 2005-2013 19

Acknowledgment

n  This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
¨ http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2013 20

11

Announcement

n  Poster session 3-5pm CSE Atrium:
¨ Arrive 15mins early
¨ Everyone must attend
¨ Write project number on poster
¨ Prepare 2-3 minutes overview of what you did
¨ At least 2 instructors will see your project

n  Final Project Report
¨ Due Monday 9th at 9am
¨ See website for details (maximum 8 pages)
¨ Be clear about what you did
¨ Make it read like a paper

©Carlos Guestrin 2005-2013 21

Reinforcement
Learning

Machine Learning – CSE546
Carlos Guestrin
University of Washington

December 3, 2013
©Carlos Guestrin 2005-2013 22

12

23

The Reinforcement Learning task

World: You are in state 34.

 Your immediate reward is 3. You have possible 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

 Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.
World: You’re in state 34 (again).

 Your immediate reward is 3. You have possible 3 actions.

©Carlos Guestrin 2005-2013

24

Formalizing the (online)
reinforcement learning problem

n  Given a set of states X and actions A
¨  in some versions of the problem size of X and A unknown

n  Interact with world at each time step t:
¨ world gives state xt and reward rt
¨ you give next action at

n  Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

©Carlos Guestrin 2005-2013

13

25

The “Credit Assignment” Problem

Yippee! I got to a state with a big reward! But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

I’m in state 43, reward = 0, action = 2
“ “ “ 39, “ = 0, “ = 4
“ “ “ 22, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 13, “ = 0, “ = 2
“ “ “ 54, “ = 0, “ = 2
“ “ “ 26, “ = 100,

26

Exploration-Exploitation tradeoff

n  You have visited part of the state
space and found a reward of 100
¨  is this the best I can hope for???

n  Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
¨ at the risk of missing out on some

large reward somewhere
n  Exploration: should I look for a

region with more reward?
¨ at the risk of wasting my time or

collecting a lot of negative reward
©Carlos Guestrin 2005-2013

14

27

Two main reinforcement learning
approaches

n  Model-based approaches:
¨ explore environment, then learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
¨ use model to plan policy, MDP-style
¨ approach leads to strongest theoretical results
¨ works quite well in practice when state space is manageable

n  Model-free approach:
¨ don’t learn a model, learn value function or policy directly
¨  leads to weaker theoretical results
¨ often works well when state space is large

©Carlos Guestrin 2005-2013

28

Rmax – A model-based
approach

©Carlos Guestrin 2005-2013

15

29

Given a dataset – learn model

n  Dataset:

n  Learn reward function:
¨  R(x,a)

n  Learn transition model:
¨  P(x’|x,a)

Given data, learn (MDP) Representation:

©Carlos Guestrin 2005-2013

30

Planning with insufficient information

n  Model-based approach:
¨  estimate R(x,a) & P(x’|x,a)
¨  obtain policy by value or policy iteration, or linear programming
¨  No credit assignment problem!

n  learning model, planning algorithm takes care of “assigning” credit

n  What do you plug in when you don’t have enough information about a state?
¨  don’t reward at a particular state

n  plug in 0?
n  plug in smallest reward (Rmin)?
n  plug in largest reward (Rmax)?

¨  don’t know a particular transition probability?

©Carlos Guestrin 2005-2013

16

31

Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff

n  A state may be very hard to reach
¨ waste a lot of time trying to learn rewards and

transitions for this state
¨ after a much effort, state may be useless

n  A strong advantage of a model-based approach:
¨ you know which states estimate for rewards and

transitions are bad
¨ can (try) to plan to reach these states
¨ have a good estimate of how long it takes to get there

©Carlos Guestrin 2005-2013

32

A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

n  Optimism in the face of uncertainty!!!!
¨ heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
n  If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

n  If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
¨ R(x0,a) = Rmax
¨ P(x0|x0,a) = 1

©Carlos Guestrin 2005-2013

17

33

Understanding Rmax

n  With Rmax you either:
¨ explore – visit a state-action

pair you don’t know much
about

n  because it seems to have lots of
potential

¨ exploit – spend all your time
on known states

n  even if unknown states were
amazingly good, it’s not worth it

n  Note: you never know if you
are exploring or exploiting!!!

©Carlos Guestrin 2005-2013

34

Implicit Exploration-Exploitation Lemma

n  Lemma: every T time steps, either:
¨ Exploits: achieves near-optimal reward for these T-steps, or
¨ Explores: with high probability, the agent visits an unknown

state-action pair
n  learns a little about an unknown state

¨ T is related to mixing time of Markov chain defined by MDP
n  time it takes to (approximately) forget where you started

©Carlos Guestrin 2005-2013

18

35

The Rmax algorithm
n  Initialization:

¨  Add state x0 to MDP
¨  R(x,a) = Rmax, ∀x,a
¨  P(x0|x,a) = 1, ∀x,a
¨  all states (except for x0) are unknown

n  Repeat
¨  obtain policy for current MDP and Execute policy

¨  for any visited state-action pair, set reward function to appropriate value

¨  if visited some state-action pair x,a enough times to estimate P(x’|x,a)
n  update transition probs. P(x’|x,a) for x,a using MLE
n  recompute policy

©Carlos Guestrin 2005-2013

36

Visit enough times to estimate P(x’|x,a)?

n  How many times are enough?
¨ use Chernoff Bound!

n  Chernoff Bound:
¨ X1,…,Xn are i.i.d. Bernoulli trials with prob. θ	

¨  P(|1/n ∑i Xi - θ| > ε) ≤ exp{-2nε2}

©Carlos Guestrin 2005-2013

19

37

Putting it all together

n  Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ	

¨ Every T steps:

n  achieve near optimal reward (great!), or
n  visit an unknown state-action pair ! num. states and actions is

finite, so can’t take too long before all states are known

©Carlos Guestrin 2005-2013

What you need to know about RL…

n  Neither supervised, nor unsupervised learning
n  Try to learn to act in the world, as we travel

states and get rewards
n  Model-based & Model-free approaches
n  Rmax, a model based approach:

¨ Learn model of rewards and transitions
¨ Address exploration-exploitation tradeoff
¨ Simple algorithm, great in practice

©Carlos Guestrin 2005-2013 38

20

39

Closing….

©Carlos Guestrin 2005-2013

40

What you have learned this quarter
n  Learning is function approximation
n  Point estimation
n  Regression
n  LASSO
n  Subgradient
n  Stochastic gradient descent
n  Coordinate descent
n  Discriminative v. Generative learning
n  Naïve Bayes
n  Logistic regression
n  Bias-Variance tradeoff
n  Decision trees
n  Cross validation
n  Boosting
n  Instance-based learning
n  Perceptron
n  SVMs
n  Kernel trick
n  PAC learning
n  Bayes nets

¨  representation, parameter and structure learning
n  K-means
n  EM
n  Mixtures of Gaussians
n  Dimensionality reduction, PCA
n  MDPs
n  Reinforcement learning

©Carlos Guestrin 2005-2013

21

41

BIG PICTURE

n  Improving the performance at some task though experience!!! J
¨  before you start any learning task, remember the fundamental questions:

What is the
learning problem?

From what
experience?

What loss function
are you optimizing?

With what
optimization algorithm?

What model?

Which learning
algorithm?

With what
guarantees?

How will you
evaluate it?

©Carlos Guestrin 2005-2013

42

You have done a lot!!!
n  And (hopefully) learned a lot!!!

¨  Implemented
n  LASSO
n  LR
n  Perceptron
n  Clustering
n  …

¨  Answered hard questions and proved many interesting results
¨  Completed (I am sure) an amazing ML project
¨  And did excellently on the final!

n  Now you are ready for one of the most sought-after careers in industry today!!! J

Thank You for the
Hard Work!!!

©Carlos Guestrin 2005-2013

