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THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS 
VALUE GIVEN SOME INPUTS 
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Weather prediction revisted 
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Temperature 
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Reading Your Brain, Simple Example 

Animal Person 

Pairwise classification accuracy: 85% 
[Mitchell et al.] 
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Classification 

n  Learn: h:X  Y 
¨ X – features 
¨ Y – target classes 

n  Conditional probability: P(Y|X) 

n  Suppose you know P(Y|X) exactly, how should 
you classify? 
¨ Bayes optimal classifier: 

n  How do we estimate P(Y|X)? 
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Link Functions 

n  Estimating P(Y|X): Why not use standard linear 
regression? 

 
 
n  Combing regression and probability? 

¨ Need a mapping from real values to [0,1] 
¨ A link function! 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Understanding the sigmoid 
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Logistic Regression –  
a Linear classifier 
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Very convenient! 

implies 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 
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Expressing Conditional Log Likelihood 
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`(w) =
X

j

yj lnP (Y = 1|xj ,w) + (1� yj) lnP (Y = 0|xj ,w)

Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Maximize Conditional Log Likelihood: 
Gradient ascent 

15 ©Carlos Guestrin 2005-2013 

Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,k,  

 

 

repeat    
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(t) 

(t) 
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Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 

¨  In general, leads to overfitting: 
n  Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
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`(w) = ln
NY

j=1

P (yj |xj ,w)� �

2
||w||22
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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(t) 

(t) 
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Please Stop!! Stopping criterion 

n  When do we stop doing gradient descent?  

n  Because l(w) is strongly concave: 
¨  i.e., because of some technical condition 

n  Thus, stop when: 
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`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

`(w⇤)� `(w)  1

2�
||r`(w)||22
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Digression: Logistic regression for 
more than 2 classes 

n  Logistic regression in more general case (C classes), where 
Y in {0,…,C-1} 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {0,…,C-1} 

 for c>0 
 
 
 

 for c=0 (normalization, so no weights for this class) 
 
 

 

Learning procedure is basically the same  
as what we derived! 
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P (Y = c|x,w) =

exp(wc0 +
Pk

i=1 wcixi)

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)

P (Y = 0|x,w) =

1

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)
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Stochastic Gradient 
Descent 
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The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

`D(w) =
1

N

NX

j=1

`(w,xj)

Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 
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`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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r`(w) = E
x

[r`(w,x)]

Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Stochastic Gradient Ascent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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