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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS
VALUE GIVEN SOME INPUTS
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Weather prediction revisted
o

=)

Temperature

O

Reading Your Brain, Simple Example

. . [Mitchell et al.]
Pairwise classification accuracy: 85%

Person 5 0 45 Animal
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Classification
= JEE
m Learn: h:X— Y

X — features
Y — target classes

m Conditional probability: P(Y|X)

m Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:

m How do we estimate P(Y|X)?

Link Functions
* JEE——
m Estimating P(Y|X): Why not use standard linear
regression?

m Combing regression and probability?
Need a mapping from real values to [0,1]
A link function!
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Logistic 1
function

Logistic Regression  (orsigmoia): 1 +<r(-2)

" S - -
m Learn P(Y|X) directly -
Assume a particular functional form for link o8
function Fos
Sigmoid applied to a linear function of the input ™
features: -
1
P(Y =0|X,W) = "L
14 exp(wo + X wiX;) % >
z

Features can be discrete or continuous!
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Understanding the sigmoid
“

1
1 4 ewot2; wiz;

g(wo + Zwixi) =
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Logistic Regression—
a Linear classifier T+ eap(—2)
" :

.......

g(wo + Zwixz‘) =

Very convenient!

o 1
P(Y=0|X =< Xq,..Xn>) =
| " 1+ exp(wg + X; w; X;)

implies
exp(wgo + X; w; X;)
1+ exp(wg + > w; X;)

P(Y =11X =< X1,..Xpn>) =

implies
P(Y =1|X)
o — oy = exp(wo + ) wiX;)
P =01X) z’: o linear
classification
implies 1 rule!
P(Y =1|X)
nN—————= = X -
Py =o|x) Mo 2w
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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol ol
Gradient: Vwl(w) = | (w) . (w)
owg Own,

]/

Update rule: Aw — nvwl(W)

(t+1) ) (® ol(w)
w, +n
ow;
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better
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Loss function: Conditional Likelihood
»

m Have a bunch of iid data of the form:

m  Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N . .
In P(Dy | Dx,w) = Y InP(y/ | x/, w)
=1
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Expressing Conditional Log Likelihood
" T OOy

I(w)=)In P/ |xI,w) POV = 1, w) = _22P(wo + X, wiXy)
5 ’ 1+ exp(wg + X wiX;)

Uw) =) ¢ ImPY =1x/,w)+ (1 -3/ ) In P(Y = 0]x/, w)
j
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Maximizing Conditional Log Likelihood
- S 07 T

s P(Y = 1|X.W) = { ffiw(o;r%gljl)){ 5
l(w) = InHP(yj|Xj7w) p(wo i Wikg
J

= Zyj(wo + szxg) —In(1 + exp(wg + szxz))

Good news: I(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Maximize Conditional Log Likelihood:
Gradient ascent

J

(w) = Yy (wo+ Y wia]) = In(L + eap(wo + Y wia)))

Gradient Ascent for LR
= JEEE

Gradient ascent algorithm: iterate until change < ¢
w(()t-l—l) . w(()t) +nY Y — P(YI =1 x7 W]
J

Fori=1,..., K,

WD D 4yl P = 10
J

repeat
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X-0.30 X2

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg rnvinz (t(x(,-) - Zw,:h,—(xﬁ) +A Zw?
i i=1

J
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Linear Separability
" S

+ [
.ﬁl}_. ==
Iﬁ]}l [
4+ = =
. I _
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IﬁJ}I Iﬁ]}l [ fr—
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Large parameters — Overfitting
- |

1 1 1
14e 7 14 e 22 1 4 ¢—100z

m If data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" JEE—

= Add regularlzatlon penalty, e.g., L,:

A
1nHP s w) — S w3

m Practical note about wy:

m Gradient of regularized likelihood:
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Standard v. Regularized Updates
" S
= Maximum conditional likelihgod estimate

w* =argmax In H Py |x?,w)
j=1

wi(t—}-l) - wi(t) +0> 2y — Py =1 x/, w)]
J

m Regularized maximum conditional likelihood estimate

N k
. A
w* = arg max ln”P 7x7,w——§ w?
g - (v ) 21':1 i

’wZ(H_l) — wi(t)+77 {—)\’wzgt) + ng [yj - p(yj =1 Xjﬂ%]}
J
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Please Stop!! Stopping criterion
* JEE
U(w) = 1nHP<yj\xj,w)) = Allwl 3

m When do we stop doing gradient descent?

m Because /(w) is strongly concave:
i.e., because of some technical condition

* 1 2
Uw™) = lw) < o5 IVEW)l2

m Thus, stop when:
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Digression: Logistic regression for
_ more than 2 classes
r

m Logistic regression in more general case (C classes), where
Yin{0,...,C-1}
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Digression: Logistic regression more

generally
" JEE—

m Logistic regression in more general case, where

Yin{0,...,C-1}
for c>0 .
PY =c¢|x,w) = exp(Weo + D ;g Weils)

C— k
1+ Zc’:i eXP(wcfo + 21:1 wc’ixi)

for c=0 (normalization, so no weights for this class)
1

1+ ZS;} exp(wero + Zf:l Weri i)

P(Y =0|x,w) =

Learning procedure is basically the same
as what we derived!
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Stochastic Gradient
Descent

Machine Learning — CSE546
Carlos Guestrin
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The Cost, The Cost!l! Think about

_ the cost...
I
m What's the cost of a gradient update step for LR?7?7?

w4y {—mf“ + Y2l - P(yI =1, v35]}
J
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Learning Problems as Expectations
* JEEE

m  Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

N
1 .
- J
Ip(w) = N g l(w,x7)
Jj=1
m However, we should really minimize expected loss on all data:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)dx

m  So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" JEE
m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)ﬁ(w,x)dx
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
" JEE
m “True” gradient: VE(W) = F [VK(W,X)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

. Logistic Reﬁression

m Logistic loss as a stochastic function:

Ex [((w,%)] = Ex [In P(y[x, w) = A[|w][3]

m Batch gradient ascent updates:

N
(t+1) ® WO G C1e() )
w, —w; +77{ Aw; +N;wi YY) — P(Y =1|xY), w'")]

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wgt) + M {—)\wgt) + x,gt) [y — P(Y =1]xW, W(t))]}
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Stochastic Gradient Ascent:

. general case

m  Given a stochastic function of parameters:
Want to find maximum

m Start from w(©

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m  Works on the online learning setting!
m Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations
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What you should know...
" JEE
m Classification: predict discrete classes rather than

real values
m Logistic regression model: Linear model
Logistic function maps real values to [0,1]
m Optimize conditional likelihood
m Gradient computation
m Overfitting
m Regularization
m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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