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A simple setting…  

n  Classification 
¨ N data points 
¨ Finite number of possible hypothesis (e.g., dec. trees 

of depth d) 
n  A learner finds a hypothesis h that is consistent 

with training data 
¨ Gets zero error in training – errortrain(h) = 0 

n  What is the probability that h has more than ε 
true error? 
¨ errortrue(h) ≥ ε	
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How likely is a bad hypothesis to 
get N data points right? 

n  Hypothesis h that is consistent with training data → 
got N i.i.d. points right 
¨ h “bad” if it gets all this data right, but has high true error 

n  Prob. h with errortrue(h) ≥ ε  gets one data point right 

n  Prob. h with errortrue(h) ≥ ε  gets N data points right 
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But there are many possible hypothesis 
that are consistent with training data 
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How likely is learner to pick a bad 
hypothesis 

n  Prob. h with errortrue(h) ≥ ε  gets N data points right 

n  There are k hypothesis consistent with data 
¨ How likely is learner to pick a bad one? 
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Union bound 

n  P(A or B or C or D or …) 
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How likely is learner to pick a bad 
hypothesis 

n  Prob. a particular h with errortrue(h) ≥ ε  gets N data 
points right 

n  There are k hypothesis consistent with data 
¨ How likely is it that learner will pick a bad one out of these 

k choices? 
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Generalization error in finite 
hypothesis spaces [Haussler ’88]  

n  Theorem: Hypothesis space H finite, dataset D 
with N i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data: 

P (errortrue(h) > ✏)  |H|e�N✏
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Using a PAC bound 

n  Typically, 2 use cases: 
¨ 1: Pick ε and δ, give you N 
¨ 2: Pick N and δ, give you ε	



P (errortrue(h) > ✏)  |H|e�N✏
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Summary: Generalization error in 
finite hypothesis spaces [Haussler ’88]  

n  Theorem: Hypothesis space H finite, dataset D 
with N i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data: 

P (errortrue(h) > ✏)  |H|e�N✏

Even if h makes zero errors in training data, may make errors in test 
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Limitations of Haussler ‘88 bound 

n  Consistent classifier 

n  Size of hypothesis space 

P (errortrue(h) > ✏)  |H|e�N✏
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What if our classifier does not have 
zero error on the training data? 

n  A learner with zero training errors may make 
mistakes in test set 

n  What about a learner with errortrain(h) in training set?  
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Simpler question: What’s the 
expected error of a hypothesis? 

n  The error of a hypothesis is like estimating the 
parameter of a coin! 

n  Chernoff bound: for N i.i.d. coin flips, x1,…,xN, 
where xj ∈ {0,1}. For 0<ε<1: 
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Using Chernoff bound to estimate 
error of a single hypothesis 
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But we are comparing many 
hypothesis: Union bound 

For each hypothesis hi:  

What if I am comparing two hypothesis, h1 and h2?  

P (errortrue(hi)� errortrain(hi) > ✏)  e

�2N✏2
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Generalization bound for |H| 
hypothesis 

n  Theorem: Hypothesis space H finite, dataset D 
with N i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h: 

P (errortrue(hi)� errortrain(hi) > ✏)  e

�2N✏2
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PAC bound and Bias-Variance 
tradeoff  

n  Important: PAC bound holds for all h,  
but doesn’t guarantee that algorithm finds best h!!! 

or, after moving some terms around, 
with probability at least 1-δ:	



P (errortrue(h)� errortrain(h) > ✏)  e

�2N✏2

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
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What about the size of the 
hypothesis space? 

n  How large is the hypothesis space? 

N �
ln |H|+ ln 1

�

2✏2
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Boolean formulas with m binary features 
 

N �
ln |H|+ ln 1

�

2✏2
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Number of decision trees of depth k 

Recursive solution  
Given m attributes 
Hk = Number of decision trees of depth k 
H0 =2 
Hk+1 = (#choices of root attribute) * 

   (# possible left subtrees) * 
   (# possible right subtrees) 
    = m * Hk * Hk 

 
Write Lk = log2 Hk 
L0 = 1 
Lk+1 = log2 m + 2Lk 
So Lk = (2k-1)(1+log2 m) +1 

N �
ln |H|+ ln 1

�

2✏2
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PAC bound for decision trees of 
depth k 

n  Bad!!! 
¨ Number of points is exponential in depth! 

n  But, for N data points, decision tree can’t get too big… 

Number of leaves never more than number data points 

N �
2

k
logm+ ln

1
�

✏2

Number of Decision Trees with k Leaves 

n  Number of decision trees of depth k is really 
really big: 
¨  ln |H| is about 2k log m 

n  Decision trees with up to k leaves: 
¨  |H| is about  mk k2k   

n  A very loose bound 
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PAC bound for decision trees with k 
leaves – Bias-Variance revisited 

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
ln |HDTs k leaves|  2k(lnm+ ln k)

errortrue(h)  errortrain(h) +

s
2k(lnm+ ln k) + ln 1

�

2N
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What did we learn from decision trees? 

n  Bias-Variance tradeoff formalized 

n  Moral of the story: 
 Complexity of learning not measured in terms of size hypothesis space, 
but in maximum number of points that allows consistent classification 
¨  Complexity N – no bias, lots of variance 
¨  Lower than N – some bias, less variance 

 

errortrue(h)  errortrain(h) +

s
2k(lnm+ ln k) + ln 1

�

2N
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What about continuous hypothesis 
spaces? 

n  Continuous hypothesis space:  
¨  |H| = ∞ 
¨  Infinite variance??? 

n  As with decision trees, only care about the 
maximum number of points that can be 
classified exactly! 
¨ Called VC dimension… see readings for details 

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
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What you need to know 

n  Finite hypothesis space 
¨ Derive results 
¨ Counting number of hypothesis 
¨ Mistakes on Training data 

n  Complexity of the classifier depends on number of 
points that can be classified exactly 
¨ Finite case – decision trees 
¨  Infinite case – VC dimension 

n  Bias-Variance tradeoff in learning theory 
n  Remember: will your algorithm find best classifier? 
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Reinforcement Learning 
 

training by feedback 
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Learning to act 

n  Reinforcement learning 
n  An agent  

¨  Makes sensor observations 
¨  Must select action 
¨  Receives rewards  

n  positive for “good” states 
n  negative for “bad” states 

[Ng et al. ’05]  
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Markov Decision Process (MDP) 
Representation 

n  State space:  
¨  Joint state x of entire system 

n  Action space:  
¨  Joint action a= {a1,…, an} for all agents 

n  Reward function:  
¨  Total reward R(x,a) 

n  sometimes reward can depend on action 

n  Transition model:  
¨  Dynamics of the entire system P(x’|x,a)  
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Discount Factors 

People in economics and probabilistic decision-making do 
this all the time.	


The “Discounted sum of future rewards” using discount 
factor γ” is 

    (reward now) + 
  γ (reward in 1 time step) + 
  γ 2  (reward in 2 time steps) + 
  γ 3  (reward in 3 time steps) + 
   : 
   :       (infinite sum) 

©Carlos Guestrin 2005-2013 31 

The Academic Life 

 Define: 
 VA = Expected discounted future rewards starting in state A 
 VB = Expected discounted future rewards starting in state B 
 VT =       “               “               “          “              “       “    “     T 
 VS =       “               “               “          “              “       “    “     S 

 VD =       “               “               “          “              “       “    “     D 

  How do we compute VA, VB, VT, VS, VD ? 

A. 
Assistant 

Prof 
20 

B. 
Assoc. 
Prof 
60 

S. 
On the 
Street 

10 

D. 
Dead 

0 

T. 
Tenured 

Prof 
400 

Assume Discount 

Factor γ = 0.9 

0.7 

0.7 

0.6 

0.3 

0.2 0.2 

0.2 

0.3 

0.6 
0.2 
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Policy 

Policy: π(x) = a 
At state x, 

action a for all 
agents 

π(x0) = both peasants get wood 
x0 

π(x1) = one peasant builds  
barrack, other gets gold  

x1 

π(x2) = peasants get gold,  
footmen attack 

x2 
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Value of Policy 

Value: Vπ(x) 
Expected long-

term reward 
starting from x 

Start  
from x0 

x0 

R(x0) 

π(x0) 

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +  
 γ3 R(x3) + γ4 R(x4) + …] 

Future rewards  
discounted by γ  in [0,1) x1 

R(x1) 

   x1’’ 

 x1’ 
R(x1’) 

R(x1’’) 

π(x1) 

x2 

R(x2) 

π(x2) 

x3 

R(x3) 

π(x3) 
x4 

R(x4) 

π(x1’) 

π(x1’’) 
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