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Sparsity

m Vector w is sparse, if many entries are zero:

m Very useful for many tasks, e.g.,
Efficiency: If size(w) = 100B, each prediction is expensive:
= [f part of an online system, too slow
= If wis sparse, prediction computation only depends on number of non-zeros

Interpretability: What are the ; Run
relevant dimension to make a :
prediction? Participant a
= E.g., what are the parts of the " s
brain associated with particular §
words? o
Mean of 3
independently =
learned signatures g
ovcr‘al] nine g
m But computationally paricipants

intractable to perform
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Simple greedy model selection algorithm
“
m Pick a dictionary of features

e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features F,= &

Run learning algorithm for current set
of features F;

= Obtain h,
Select next best feature X;*

m e.g., X that results in lowest training error
learner when learning with £, + {X}

Fi.; € F+ {X}
Recurse
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Greedy model selection
" JEE

m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X||Y)
Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

m e.g., [Krause & Guestrin '05]: Near-optimal in some settings that
include Naive Bayes

m There are many more elaborate methods out there
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When do we stop???
" I

m Greedy heuristic:

Select next best feature X;"

= e.g., X that results in lowest training error
learner when learning with F; + {X}

+{X7}

When do you stop???

m When training error is low enough?
m When test set error is low enough?
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Regularization in Linear Regression
" JEE—
m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2

1.1+4,700,910.7 X — 8,585,638.4 X2 + ...
Lf M —

/ U | 7 OV Ny,
o e

k,,

m | Regularized or penalized regr(?essmn aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method

L'L 5 TV —4 f"‘“lil'l ok Smoathe L chitas
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Variable Selection by Regularization
" S

m Ridge regression: Penalizes large weights

m What if we want to perform “feature selection”?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose features with largest coefficients in ridge solution

m Try new penalty: Penalize non-zero weights
Regularization penalty:

Leads to sparse solutions
Just like ridge regression, solution is indexed by a continuous param A

This simple approach has changed statistics, machine learning &
electrical engineering
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LASSO Regression
* JEE——

m LASSO: least absolute shrinkage and selection operator

m New objective:
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Geometric Intuition for Sparsity

N\
[ \//
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Ridge Regression

Lasso

From
Rob
Tibshirani
slides

m LASSO solution:

WLASSO = arg HEHZ t(z;) — (wo + > wihi(z;)

k

i=1

Optimizing the LASSO Objective
"

2 k
)) +/\Z|wi|




Coordinate Descent
= JEE

m Given a function F

Want to find minimum

m Often, hard to find minimum for all coordinates, but easy for one coordinate

m Coordinate descent:

m How do we pick next coordinate?

m  Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective
One Coordinate at a Time
S

N

k 2 k
> (1) -t () 33
j=1 i=1 i=1
m Taking the derivative:

Residual sum of squares (RSS):

8 N k
——RSS(w) = —QZ he(z;) (t(xj) — (wo + Zwihi(m))

owy

Penalty term:
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Subgradients of Convex Functions
" O

m Gradients lower bound convex functions:

m Gradients are unique at w iff function differentiable at w

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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N

Taking the Subgradient () e+ xwnen) 3w

J

n
N
m Gradient of RSS term: ag = 2;(’”(’9))2
0 J;V
8_ngSS(W) = apwy — Cy co= QZhé(xj) (t(xj) — (wo + Zwihi(xj)))
Jj=1 i#l

If no penalty:
m Subgradient of full objective:
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Setting Subgradientto 0
® JE
agwg — Cp — A wy <0
&WF(W)—{ [—Cg—)\,—Cg—i—)\] wy =0
apwy — ¢y + A we > 0

Soft Thresholding
" JEE
{ (ce+ A)/ag co < —A
Wy = 0 Cy € [—)\,)\]
(ce — A)/ay co > A

/ From
Ce Kevin Murphy
/ textbook




Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence

Pick a coordinate / at (random or sequentially)

= Set: (coe+ ) /ag co < —A
Wy = 0 co € [=A )
(ce —A)/ag co > A
= Where: N
a = ZZ(M(XJ))2

v
=23 hilx)) (t(Xﬁ — (wo + Zw,h,(x])))
=1 P!

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
o
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path

0.7

‘M—O—Ica\/ol
06 —O— |weight
—O— age
=8— |bph
05 —e— From
0.4 =@ gleason Kevin Murphy
03 textbook
0.2
0.1
0
-0.1
08 10 15 20 25
LASSO Example
N
Term Least Squares  Ridge Lasso
Intercept 2.465 2.452  2.468
lcavol 0.680 0.420 0.533 From
. Rob
2 2 1
lweight 0.263 0.238 0.169 Tibshirani
age —0.141 —0.046 slides
lbph 0.210 0.162  0.002
svi 0.305 0.227 0.094
lcp —0.288 0.000
gleason —0.021 0.040
pggib 0.267 0.133
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Debiasing
S

Original (D = 4096, number of nonzeros = 160)

oL I Illlllmﬁ g | ||| I ﬂ[ﬂ
_y LT M1 1111
0 1000 2000 3000 4000
L1 reconstruction (KO = 1024, lambda = 0.0516, MSE = 0.0027

0 1000 2000 3000 4000
Debiased (MSE = 3.26e—005)
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9

0 1000 2000 3000 4000

From Kevin Murphy textbook
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What you need to know

m Variable Selection: find a sparse solution to learning

problem

m L, regularization is one way to do variable selection

Applies beyond regressions
Hundreds of other approaches out there

m LASSO objective non-differentiable, but convex = Use

subgradient

m No closed-form solution for minimization = Use

coordinate descent

m Shooting algorithm is very simple approach for solving

LASSO
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Classification
Logistic Regression
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THUS FAR, REGRESSION:
PREDICT A CONTINUOUS
VALUE GIVEN SOME INPUTS
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Weather prediction revisted
o

=)

Temperature

O

Reading Your Brain, Simple Example

. . [Mitchell et al.]
Pairwise classification accuracy: 85%

Person 5 0 45 Animal
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Classification
= JEE
m Learn: h:X— Y

X — features
Y — target classes

m Conditional probability: P(Y|X)

m Suppose you know P(Y|X) exactly, how should
you classify?
Bayes optimal classifier:

m How do we estimate P(Y|X)?

Link Functions
* JEE——
m Estimating P(Y|X): Why not use standard linear
regression?

m Combing regression and probability?
Need a mapping from real values to [0,1]
A link function!
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Logistic 1
function

Logistic Regression  (orsigmoia): 1 +<r(-2)

" S - -
m Learn P(Y|X) directly -
Assume a particular functional form for link o8
function Fos
Sigmoid applied to a linear function of the input ™
features: -
1
P(Y =0|X,W) = "L
14 exp(wo + X wiX;) % >
z

Features can be discrete or continuous!

uestrin 2005-
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Understanding the sigmoid
“

1
1 4 ewot2; wiz;

g(wo + Zwixi) =

Wo=-2, W,=-1 w,=0, w,=-1 w,=0, w,=-0.5
1 1 1
0.9 0.9 0.9
0.8 08 0.8
0.7 0.7 0.7
0.6 0.6 0.6
05 05 05
0.4 0.4 0.4
03 03 03
0.2 02 0.2
0.1 01 0.1
06 4 -2 0 2 4 D- 4 2 0 2 4 06 4 -2 0 2

©Carlos Guestrin 2005-2013

15



Logistic Regression—
a Linear classifier T+ eap(—2)
" :

.......

g(wo + Zwixz‘) =

Very convenient!

o 1
P(Y=0|X =< Xq,..Xn>) =
| " 1+ exp(wg + X; w; X;)

implies
exp(wgo + X; w; X;)
1+ exp(wg + > w; X;)

P(Y =11X =< X1,..Xpn>) =

implies
P(Y =1|X)
o — oy = exp(wo + ) wiX;)
P =01X) z’: o linear
classification
implies 1 rule!
P(Y =1|X)
nN—————= = X -
Py =o|x) Mo 2w
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