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Sparsity 
n  Vector w is sparse, if many entries are zero: 

n  Very useful for many tasks, e.g.,  
¨  Efficiency:  If size(w) = 100B, each prediction is expensive: 

n  If part of an online system, too slow 
n  If w is sparse, prediction computation only depends on number of non-zeros 

¨  Interpretability:  What are the  
relevant dimension to make a  
prediction? 

n  E.g., what are the parts of the  
brain associated with particular  
words? 

n  But computationally  
intractable to perform  
“all subsets” regression 
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Simple greedy model selection algorithm 

n  Pick a dictionary of features 
¨ e.g., polynomials for linear regression 

n  Greedy heuristic: 
¨ Start from empty (or simple) set of 

features F0 = ∅	


¨ Run learning algorithm for current set 

of features Ft 
n  Obtain ht 

¨ Select next best feature Xi
* 

n  e.g., Xj that results in lowest training error 
learner when learning with Ft + {Xj} 

¨ Ft+1 ç Ft + {Xi
*} 

¨ Recurse 
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Greedy model selection 

n  Applicable in many settings: 
¨ Linear regression: Selecting basis functions 
¨ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
¨ Logistic regression: Selecting features (basis functions) 
¨ Decision trees: Selecting leaves to expand 

n  Only a heuristic! 
¨ But, sometimes you can prove something cool about it 

n  e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that 
include Naïve Bayes 

n  There are many more elaborate methods out there 
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 When do we stop??? 

n  Greedy heuristic: 
¨  … 
¨  Select next best feature Xi

* 
n  e.g., Xj that results in lowest training error 

learner when learning with Ft  + {Xj} 
¨  Ft+1 ç  Ft + {Xi

*} 
¨  Recurse 

When do you stop??? 
n  When training error is low enough? 
n  When test set error is low enough? 
n    
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Variable Selection by Regularization 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose features with largest coefficients in ridge solution 

n  Try new penalty: Penalize non-zero weights 
¨  Regularization penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 
¨  This simple approach has changed statistics, machine learning & 

electrical engineering  
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression
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Optimizing the LASSO Objective 
n  LASSO solution: 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick next coordinate? 

n  Super useful approach for *many* problems 
¨  Converges to optimum in some cases, such as LASSO 

11 ©2005-2013 Carlos Guestrin 

Optimizing LASSO Objective  
One Coordinate at a Time 

n  Taking the derivative: 
¨  Residual sum of squares (RSS):  

 
 
 
¨  Penalty term: 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at w iff function differentiable at w 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Taking the Subgradient 

n  Gradient of RSS term: 

 
   

¨  If no penalty: 

n  Subgradient of full objective: 
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Setting Subgradient to 0 
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Soft Thresholding  
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Coordinate Descent for LASSO  
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate l at (random or sequentially) 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 
n  Other common technique = LARS 

¨ Least angle regression and shrinkage, Efron et al. 2004 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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Now: LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 
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LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

From  
Rob 
Tibshirani 
slides 
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Debiasing 
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From Kevin Murphy textbook 
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What you need to know 

n  Variable Selection: find a sparse solution to learning 
problem 

n  L1 regularization is one way to do variable selection 
¨  Applies beyond regressions 
¨  Hundreds of other approaches out there 

n  LASSO objective non-differentiable, but convex è Use 
subgradient 

n  No closed-form solution for minimization è Use 
coordinate descent 

n  Shooting algorithm is very simple approach for solving 
LASSO 
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Classification 
Logistic Regression 
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THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS 
VALUE GIVEN SOME INPUTS 
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Weather prediction revisted 

25 

Temperature 
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Reading Your Brain, Simple Example 

Animal Person 

Pairwise classification accuracy: 85% 
[Mitchell et al.] 
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Classification 

n  Learn: h:X  Y 
¨ X – features 
¨ Y – target classes 

n  Conditional probability: P(Y|X) 

n  Suppose you know P(Y|X) exactly, how should 
you classify? 
¨ Bayes optimal classifier: 

n  How do we estimate P(Y|X)? 
©Carlos Guestrin 2005-2013 27 

Link Functions 

n  Estimating P(Y|X): Why not use standard linear 
regression? 

 
 
n  Combing regression and probability? 

¨ Need a mapping from real values to [0,1] 
¨ A link function! 

©Carlos Guestrin 2005-2013 28 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Understanding the sigmoid 
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Logistic Regression –  
a Linear classifier 

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

31 ©Carlos Guestrin 2005-2013 

Very convenient! 

implies 
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