

Machine Learning Study of algorithms that improve their performance at some task with experience Machine Learning Understanding

Growth of Machine Learning

One of the most sought for specialties in industry today!!!!

- Machine learning is preferred approach to
 - ☐ Speech recognition, Natural language processing
 - □ Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
 - □ Sensor networks
 - ...
- This trend is accelerating, especially with Big Data
 - □ Improved machine learning algorithms
 - □ Improved data capture, networking, faster computers
 - □ Software too complex to write by hand
 - □ New sensors / IO devices
 - ☐ Demand for self-customization to user, environment

©2005-2013 Carlos Guestria

31

Syllabus

- Covers a wide range of Machine Learning techniques — from basic to state-of-the-art
- You will learn about the methods you heard about:
 - Point estimation, regression, naïve Bayes, logistic regression, nearest-neighbor, decision trees, boosting, perceptron, overfitting, regularization, dimensionality reduction, PCA, error bounds, VC dimension, SVMs, kernels, margin bounds, K-means, EM, mixture models, semi-supervised learning, HMMs, graphical models, active learning, reinforcement learning...
- Covers algorithms, theory and applications
- It's going to be fun and hard work ③

©2005-2013 Carlos Guestrin

Prerequisites

- Formally:
 - □ STAT 341, STAT 391, or equivalent
- Probabilities
 - □ Distributions, densities, marginalization...
- Basic statistics
 - ☐ Moments, typical distributions, regression...
- Algorithms
 - □ Dynamic programming, basic data structures, complexity...
- Programming
 - will be very useful, but we'll help you get started
- We provide some background, but the class will be fast paced
- Ability to deal with "abstract mathematical concepts"

©2005-2013 Carlos Guestrin

33

Recitations & Python

- We'll run an *optional* recitations:
 - □ Tuesdays @5:30pm
 - □ Location **PSD** LOW IOI
- We are recommending Python for homeworks!
 - ☐ There are many resources to get started with Python online
 - □ We'll run an *optional* tutorial:
 - First recitation: Tuesday 10/1 @5:30pm

©2005-2013 Carlos Guestrin

Staff

- Three Great TAs: Great resource for learning, interact with them!
 - □ Eric Lei

Office hours: Fridays 1:30-3:30pm

■ Marco Ribeiro

Office hours: Tuesdays 1:30-3:20pm

□ Tyler Johnson

Office hours: Mondays 3-5pm

□ Prof: Carlos Guestrin

Office hours: Wednesdays 10:30-11:30am

©2005-2013 Carlos Guestria

35

Communication Channels

- Only channel for announcements, questions, etc. – Catalyst Group:
 - □ https://catalyst.uw.edu/gopost/board/tbjohns/34218/
 - "Subscribe!
 - ☐ All non-personal questions should go here
 - ☐ Answering your question will help others
 - □ Feel free to chime in
- For e-mailing instructors about personal issues, use:
 - □ cse546-instructors@cs.washington.edu

©2005-2013 Carlos Guestrin

Text Books

- Required Textbook:
 - ☐ Machine Learning: a Probabilistic Perspective; Kevin Murphy
- Optional Books:
 - ↑ □ Pattern Recognition and Machine Learning; Chris Bishop
 - ☐ The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman
 - □ Machine Learning; Tom Mitchell
 - □ Information Theory, Inference, and Learning Algorithms; David MacKay

©2005-2013 Carlos Guestrin

37

Grading

- 4 homeworks (35%)
 - □ First one goes out 9/30
 - Start early, Start
- Final project (30%)
 - □ Full details out around 10/9
 - □ Projects done individually, or groups of two students
- **√** Midterm (15%)
 - □ Wed., 10/30 in class
- Final (20%)
 - □ TBD by registrar

©2005-2013 Carlos Guestrin

Homeworks

- Homeworks are hard, start early ☺
- Due in the beginning of class
- 33% subtracted per late day
- You have 3 LATE DAYS to use for homeworks only throughout the quarter ☐ Please plan accordingly and after that don't be about deadlines, travel,... ⑤
- All homeworks must be handed in, even for zero credit
- Use Catalyst to submit homeworks
- Collaboration
 - □ You may **discuss** the questions
 - Each student writes their own answers
 - □ Write on your homework anyone with whom you collaborate
 - □ Each student must write their own code for the programming part
 - □ Please don't search for answers on the web, Google, previous years' homeworks, etc.
 - please ask us if you are not sure if you can use a particular reference

©2005-2013 Carlos Guestri

Projects

- An opportunity to exercise what you learned and to learn new things
- Individually or groups of two
- Must involve real data
 - ☐ Must be data that you have available to you by the time of the project proposals
- Must involve machine learning
- It's encouraged to be related to your research, but must be something new you did this quarter
 - □ Not a project you worked on during the summer, last year, etc.
- Full details in a couple of weeks
- Wed., October 23 at 9:00am: Project Proposals
- Mon., November 11 at 9:00am: Project Milestone
- Wed., December 4, 3-5pm: Poster Session
- Mon., December 9 at 9:00am: Project Report

Enjoy!

- ML is becoming ubiquitous in science, engineering and beyond
- It's one of the hottest topics in industry today
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins...

©2005-2013 Carlos Guestria

41

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - ☐ He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - □ You say: Please flip it a few times:

PH

-)(H)= }

- ☐ You say: The probability is:
- □He says: Why???
- ☐ You say: Because...

©2005-2013 Carlos Guestrin

Thumbtack - Binomial Distribution

- P(Heads) = θ , P(Tails) = 1- θ P(D| θ) : P(HHTHT) = θ θ (1- θ) θ (1- θ) $\theta = \theta$
- HHTHT indep indentically dist. IID

- Flips are i.i.d.:
 - □ Independent events
 - ☐ Identically distributed according to Binomial distribution
- Sequence *D* of α_H Heads and α_T Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

©2005-2013 Carlos Guestria

43

Maximum Likelihood Estimation 4x

- **Data**: Observed set *D* of α_H Heads and α_T Tails
- Hypothesis: Binomial distribution
- \blacksquare Learning θ is an optimization problem
 - □ What's the objective function?

 MAY P(D | θ) : MAY (1-θ) (1-θ)
- 2. m:2(0) x man+cs/
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta}_{\mathsf{nl\ell}} = \arg\max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

©2005-2013 Carlos Guestri

Your first learning algorithm

$$\hat{\theta}_{\text{nut}} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha} H(1-\theta)^{\alpha} T$$

$$= \arg \max_{\theta} \ln \theta^{\alpha} H(1-\theta)^{\alpha} T$$

$$= \log \min_{\theta} \ln \theta^{\alpha} H(1-\theta)^{\alpha} T$$

$$= \log \ln \theta^{\alpha} T$$

$$= \log \ln \theta^{\alpha}$$

How many flips do I need?

 $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = \frac{3}{5}$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: θ = 3/5, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

©2005-2013 Carlos Guestri

- For $N = \alpha_H + \alpha_T$, and $\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$ 10 - Once ?
- Let $\underline{\theta}^*$ be the true parameter, for any ε >0:

$$P(|\widehat{\theta}_{\text{Nu}} - \theta^*| \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$

$$|\widehat{\theta}_{\text{of}}| = |\widehat{\theta}_{\text{of}}| = |\widehat{\theta}_{\text{of}}|$$

$$|\widehat{\theta}_{\text{of}}| = |\widehat{\theta}_{\text{of}}|$$

$$|\widehat{\theta}_{\text{of}}| = |\widehat{\theta}_{\text{of}}|$$

PAC Learning

- - PAC: Probably Approximate Correct
 - Billionaire says: I want to know the thumbtack parameter θ , within $\varepsilon = 0.1$, with probability at

least
$$1-\delta=0.95$$
. How many flips? ϵ Sample complexity $P(||\widehat{\theta}-\theta^*|| \geq \epsilon) \leq 2e^{-2N\epsilon^2} \leq \delta$ if $\delta = 0.95$ loss my job ln $\delta = 0.95$ ln δ

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me? Sakary to saplogues
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

©2005-2013 Carlos Guestria

49

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)
 - $\square X \sim N(\mu, \sigma^2)$
 - \Box Y = aX + b \rightarrow Y ~ $N(a\mu+b,a^2\sigma^2)$
- Sum of Gaussians
 - $\square X \sim N(\mu_X, \sigma^2_X)$
 - \square Y ~ $N(\mu_Y, \sigma^2_Y)$
 - \square Z = X+Y \longrightarrow Z ~ $N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

©2005-2013 Carlos Guestrin

Learning a Gaussian
$$x_1 : x_2 = x_2$$

Collect a bunch of data

Hopefully, i.i.d. samples

e.g., exam scores

Learn parameters

Mean : μ

Variance : σ

Variance : σ
 $\sigma = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2}$

■ What's MLE for mean? $\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \bigcirc$

MLE for variance The fact of the fact o

■ Again, set derivative to zero: from provious slide figure

 $\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$ $= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$ $\frac{-N}{\sigma} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^2} = 0 \quad \text{(a)} \quad \sigma^2 = \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^2}$

Learning Gaussian parameters

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

you ca

then

- □ Expected result of estimation is **not** true parameter!
- ☐ Unbiased variance estimator:

$$\widehat{\sigma}_{unbiased}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})_{i}^{2}$$

©2005-2013 Carlos Guestria

What you need to know...

- Learning is...
 - □ Collect some data
 - E.g., thumbtack flips
 - □ Choose a hypothesis class or model
 - E.g., binomial
 - □ Choose a loss function
 - E.g., data likelihood
 - □ Choose an optimization procedure
 - E.g., set derivative to zero to obtain MLE
 - □ Collect the big bucks
- Like everything in life, there is a lot more to learn...
 - ☐ Many more facets... Many more nuances...
 - □ The fun will continue...

©2005-2013 Carlos Guestria