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Why not just use Linear Regression?
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Using data to predict new data
" JEE
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Univariate 1-Nearest Neighbor
" S

Given datapoints (x7,y?) (x2,y2)..(xN,yN),where we assume y'=f(x/) for some
unknown function f.

Given query point x9, your job is to predict )A) ~ f(x")

Nearest Neighbor:

1. Find the closest x; in our set of datapoints

j(nn) = argmin|x’ - x|
J

2. Predict y=y™

(

Here, this is
the closest
datapoint

Here’s a

dataset with

one input, one ‘
output and four
datapoints.
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1-Nearest Neighbor is an example of....
Instance-based learning
" JEE

A function approximator

~
that has been around \
X
X
X

since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.

Four things make a memory based learner:
L] A distance metric

[ How many nearby neighbors to look at?
n A weighting function (optional)

n How to fit with the local points?
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1-Nearest Neighbor

“
Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4. How to fit with the local points?

Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples

= JEEE
Classification
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Regression




Multivariate distance metrics
= JEE

Suppose the input vectors x', x2, ...xN are two dimensional:
x'=(x1,,x",), x2= (X2, ,x%,), .. xVN=(xN,, xN,).

One can draw the nearest-neighbor regions in input space.

Dist(xi,x/) = (x'; — X )2 + (X, — X2 Dist(x\,xi) =(xi, — ¥/,2+(3x', — 3%,

The relative scalings in the distance metric affect region shapes
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Euclidean distance metric
“
Or equivalently, D(X’X')=\/Z O (xl. _x'i)

D(X,X')=\/(X-X')TE(X-X')

where
o2 0 0
2
2
] O O oN |
Other Metrics...

m Mahalanobis, Rank-based, Correlation-based,...
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Notable distance metrics
(and their level sets)

Scaled Euclidian (L))

L, norm (absolute)

|

L1 (max) norm
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Mahalanobis (here,
X on the previous slide is not
necessarily diagonal, but is
symmetric

Consistency of 1-NN

“ JEE

Consider an estimator f, trained on n examples
e.g., 1-NN, neural nets, regression,...

Estimator is consistent if true error goes to zero as

amount of data increases
e.g., for no noise data, consistent if;

lim_ MSE(fn) =0

Regression is not consistent!
Representation bias

1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
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k-Nearest Neighbor

Four things make a memory based learner:

1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)

atteibatel

attedbated
mixeate

K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?
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Weighted k-NNs
" JEE—
m Neighbors are not all the same
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Kernel regression
" JEE

Four things make a memory based learner:
1. A distance metric
Euclidian (and many more)
2. How many nearby neighbors to look at?
All of them
3. A weighting function (optional)
m = exp(-D(x', query)? / p?)

Nearby points to the query are weighted strongly, far points
weakly. The p parameter is the Kernel Width. Very
important.

4. How fo fit with the local points?
Predict the weighted average of the outputs:
predict = Xy / £
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Weighting functions
"

1/d 1/d»2 1/(a+1)
' = exp(-D(x', query)? / p?) io 10 .
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Typically optimize p using (Our examples use Gaussian)

gradient descent
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Kernel regression predictions
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Increasing the kernel width p means further away points get an
opportunity to influence you.

As p~>, the prediction tends to the global average.
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Kernel regression on our test cases

;;;;;;;;

attribucel

p=1/32 of x-axis width.

p=1/32 of x-axis width.

p=1/16 axis width.

Choosing a good p is important. Not just for Kernel Regression, but for
all the locally weighted learners we’re about to see.
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Kernel regression can look bad

zzzzzzzzz

Time to try something more powerful...
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Locally weighted regression
* JEE—

Kernel regression:

Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.
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Locally weighted regression
" JEE

Four things make a memory based learner:
(] A distance metric

Any

u How many nearby neighbors to look at?
All of them

[ A weighting function (optional)
Kernels

' = exp(-D(x', query)? / p?)
m  How to fit with the local points?
General weighted regression:
N 2
A =argmin Y, (y' -w'x')

w k=1
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How LWR works

LT "

Query
Linear regression Locally weighted regression
= Same parameters for = Solve weighted linear regression
all queries for each query

A -1 -1
w=(X"X)"X"Y wh =((1x)" TIX] - (11x)" 1y

T, 0 0

.| © ™ .o 0
0 0 .0
0 0

n
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Another view of LWR

o
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) /kernel too wide - includes nonlinear region
kernel just right )
kernel too narrow - excludes some of linear region
—
X

Image from Cohn, D.A., Gk i, Z., and Jol Learning with Statistical Models", JAIR Volume 4, pages #20-145.

LWR on our test cases
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p = 1/16 of x-axis width.  p = 1/32 of x-axis width.  p = 1/8 of x-axis width.
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Locally weighted polynomial regression

Local quadratic regression is easy: just add quadratic terms to the X

matrix. As the regression degree increases, the kernel width can
increase without introducing bias.
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Kernel Regression LW Linear Regression LW Quadratic Regression
Kernel width p at optimal Kernel width p at optimal Kernel width p at optimal
level. level. level.
p = 1/100 x-axis p = 1/40 x-axis p = 1/15 x-axis

Curse of dimensionality for

B} iniﬁnce-based learning

m Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset — very slow!
There are (sometimes) fast methods for dealing with large datasets

m Instance-based learning often poor with noisy or irrelevant
features
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Curse of the irrelevant feature
= JEE
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What you need to know about

iniiange-based learning

m k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

m Kernel regression

Set k to n (number of data points) and optimize weights by gradient
descent

Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average
m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches
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Acknowledgment
= JEE
m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:

http://www.cs.cmu.edu/~awm/tutorials
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