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A Decision Stump 
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Recursion Step 

Take the 
Original 
Dataset.. 

And partition it 
according 
to the value of 
the attribute we 
split on 

Examples 
in which 
cylinders 

= 4  

Examples
in which 
cylinders 

= 5 

Examples
in which 
cylinders 

= 6  

Examples
in which 
cylinders 

= 8 
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Recursion Step 

Records in 
which cylinders 

= 4  

Records in 
which cylinders 

= 5 

Records in 
which cylinders 

= 6  

Records in 
which cylinders 

= 8 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 
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Second level of tree 

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia 

(Similar recursion in the 
other cases) 
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The final tree 
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Classification of a new example 

n  Classifying a test 
example – traverse tree 
and report leaf label 
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Are all decision trees equal? 

n  Many trees can represent the same concept 
n  But, not all trees will have the same size! 

¨ e.g., φ = A∧B ∨ ¬A∧C  ((A and B) or (not A and C)) 

©Carlos Guestrin 2005-2013 
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Learning decision trees is hard!!! 

n  Learning the simplest (smallest) decision tree is 
an NP-complete problem [Hyafil & Rivest ’76]  

n  Resort to a greedy heuristic: 
¨ Start from empty decision tree 
¨ Split on next best attribute (feature) 
¨ Recurse 
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Choosing a good attribute 
X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
F T F 
F F F 
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Measuring uncertainty 

n  Good split if we are more certain about 
classification after split 
¨ Deterministic good (all true or all false) 
¨ Uniform distribution bad 

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4 

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8 
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Entropy 

Entropy H(X) of a random variable Y 
 
 
 
More uncertainty, more entropy! 
Information Theory interpretation: H(Y) is the expected number of bits needed  

to encode a randomly drawn value of Y  (under most efficient code)  
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Information gain 

n  Advantage of attribute – decrease in uncertainty 
¨  Entropy of Y before you split 

¨  Entropy after split 
n  Weight by probability of following each branch, i.e., 

normalized number of records  

n  Information gain is difference 

X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
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Learning decision trees 

n  Start from empty decision tree 
n  Split on next best attribute (feature) 

¨ Use, for example, information gain to select attribute 
¨ Split on  

n  Recurse 

©Carlos Guestrin 2005-2013 
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Look at all the 
information 
gains… 

Suppose we want 
to predict MPG 
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A Decision Stump 

©Carlos Guestrin 2005-2013 



9 

17 

Base Case 
One 

Don’t split a 
node if all 
matching 

records have 
the same 

output value 

©Carlos Guestrin 2005-2013 

18 

Base Case 
Two 

Don’t split a 
node if none 

of the 
attributes can 

create 
multiple non-

empty 
children 

©Carlos Guestrin 2005-2013 
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Base Case Two: 
No attributes can 

distinguish 
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Base Cases 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 
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Base Cases: An idea 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 

Proposed Base Case 3: 
 

If all attributes have zero information 
gain then don’t recurse 

 
 

• Is this a good idea? 
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The problem with Base Case 3 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

Y = A XOR B 

The information gains: 
The resulting bad 
decision tree: 

©Carlos Guestrin 2005-2013 
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If we omit Base Case 3: 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b 

The resulting decision tree: 
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Basic Decision Tree Building 
Summarized 
BuildTree(DataSet,Output) 
n  If all output values are the same in DataSet, return a leaf node that says 

“predict this unique output” 
n  If all input values are the same, return a leaf node that says “predict the 

majority output” 
n  Else find attribute X with highest Info Gain 
n  Suppose X has nX distinct values (i.e. X has arity nX).  

¨  Create and return a non-leaf node with nX children.  
¨  The i’th child should be built by calling 

BuildTree(DSi,Output) 
Where DSi built consists of all those records in DataSet for which X = ith 

distinct value of X. 

©Carlos Guestrin 2005-2013 
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MPG Test 
set error 

©Carlos Guestrin 2005-2013 
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MPG Test 
set error 

The test set error is much worse than the 
training set error… 

…why? 

©Carlos Guestrin 2005-2013 
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Decision trees & Learning Bias 
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe
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Decision trees will overfit 

n  Standard decision trees are have no learning bias 
¨ Training set error is always zero! 

n  (If there is no label noise) 
¨ Lots of variance 
¨ Will definitely overfit!!! 
¨ Must bias towards simpler trees 

n  Many strategies for picking simpler trees: 
¨ Fixed depth 
¨ Fixed number of leaves 
¨ Or something smarter… 

©Carlos Guestrin 2005-2013 
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Consider this 
split 
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A chi-square test 

n  Suppose that MPG was completely uncorrelated with maker. 
n  What is the chance we’d have seen data of at least this apparent 

level of association anyway? 

©Carlos Guestrin 2005-2013 
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A chi-square test 

n  Suppose that mpg was completely uncorrelated with maker. 
n  What is the chance we’d have seen data of at least this apparent level of 

association anyway? 
By using a particular kind of chi-square test, the answer is 7.2% 
 
(Such simple hypothesis tests are very easy to compute, unfortunately, 

not enough time to cover in the lecture, but see readings…) 
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Using Chi-squared to avoid overfitting 

n  Build the full decision tree as before 
n  But when you can grow it no more, start to 

prune: 
¨ Beginning at the bottom of the tree, delete splits in 

which pchance > MaxPchance 
¨ Continue working you way up until there are no more 

prunable nodes 
 
MaxPchance  is a magic parameter you must specify to the decision tree, 

indicating your willingness to risk fitting noise 

©Carlos Guestrin 2005-2013 
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Pruning example 

n  With MaxPchance = 0.1, you will see the 
following MPG decision tree: 

Note the improved 
test set accuracy 

compared with the 
unpruned tree 

©Carlos Guestrin 2005-2013 
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MaxPchance 
n  Technical note MaxPchance is a regularization parameter that helps us 

bias towards simpler models 

High Bias High Variance 

MaxPchance 
Increasing Decreasing E

xp
ec

te
d 

Tr
ue

  
E

rr
or
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Real-Valued inputs 

n  What should we do if some of the inputs are real-valued? 
mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia
bad 6 199 90 2648 15 70 america
bad 4 121 110 2600 12.8 77 europe
bad 8 350 175 4100 13 73 america
bad 6 198 95 3102 16.5 74 america
bad 4 108 94 2379 16.5 73 asia
bad 4 113 95 2228 14 71 asia
bad 8 302 139 3570 12.8 78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
good 4 120 79 2625 18.6 82 america
bad 8 455 225 4425 10 70 america
good 4 107 86 2464 15.5 76 europe
bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!! 

Finite dataset, only finite number of relevant splits! 

Idea One: Branch on each possible real value 

©Carlos Guestrin 2005-2013 
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“One branch for each numeric 
value” idea: 

Hopeless: with such high branching factor will shatter 
the dataset and overfit 

©Carlos Guestrin 2005-2013 
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Threshold splits 

n  Binary tree, split on attribute X 
¨ One branch: X < t 

¨ Other branch: X ≥ t 

©Carlos Guestrin 2005-2013 
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Choosing threshold split 

n  Binary tree, split on attribute X 
¨  One branch: X < t 
¨  Other branch: X ≥ t 

n  Search through possible values of t 
¨  Seems hard!!! 

n  But only finite number of t’s are important 
¨  Sort data according to X into {x1,…,xm} 
¨  Consider split points of the form xi + (xi+1 – xi)/2 

©Carlos Guestrin 2005-2013 
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A better idea: thresholded splits 

n  Suppose X is real valued 
n  Define IG(Y|X:t) as H(Y) - H(Y|X:t) 
n  Define H(Y|X:t) = 

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)  
n  IG(Y|X:t) is the information gain for predicting Y if all you 

know is whether X is greater than or less than t 

n  Then define IG*(Y|X) = maxt IG(Y|X:t) 
n  For each real-valued attribute, use IG*(Y|X) for 

assessing its suitability as a split 

n  Note, may split on an attribute multiple times, 
with different thresholds  

©Carlos Guestrin 2005-2013 
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Example with MPG 

©Carlos Guestrin 2005-2013 
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Example tree using reals 

©Carlos Guestrin 2005-2013 

42 

What you need to know about 
decision trees 

n  Decision trees are one of the most popular data mining tools 
¨  Easy to understand 
¨  Easy to implement 
¨  Easy to use 
¨  Computationally cheap (to solve heuristically) 

n  Information gain to select attributes (ID3, C4.5,…) 
n  Presented for classification, can be used for regression and 

density estimation too 
n  Decision trees will overfit!!! 

¨  Zero bias classifier ! Lots of variance 
¨  Must use tricks to find “simple trees”, e.g., 

n  Fixed depth/Early stopping 
n  Pruning 
n  Hypothesis testing 

©Carlos Guestrin 2005-2013 
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Why not just use Linear Regression? 

©Carlos Guestrin 2005-2013 46 

Using data to predict new data 
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Nearest neighbor 

©Carlos Guestrin 2005-2013 48 

Univariate 1-Nearest Neighbor 

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some 
unknown function f. 
Given query point xq, your job is to predict  
Nearest Neighbor: 
1.   Find the closest xi in our set of datapoints 

ŷ ≈ f x q( )

j nn( ) =
j

argmin x j − x q

ŷ = yi nn( )2.  Predict 
 Here’s a 
dataset with 
one input, one 
output and four 
datapoints. 

x 
y 
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e, 
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da
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oin
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the closest 
datapoint 
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1-Nearest Neighbor is an example of…. 
 Instance-based learning 

Four things make a memory based learner: 
n  A distance metric 
n  How many nearby neighbors to look at? 
n  A weighting function (optional) 
n  How to fit with the local points? 

x1                 y1 

x2                 y2 

x3                 y3 

. 

. 
xn                yn 

A function approximator 
that has been around 
since about 1910. 

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points. 
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1-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 One 
3.  A weighting function (optional)     

 Unused 

4.  How to fit with the local points?     
 Just predict the same output as the nearest neighbor. 
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Multivariate 1-NN examples 

Regression Classification 

©Carlos Guestrin 2005-2013 52 

Multivariate distance metrics 
Suppose the input vectors x1, x2, …xN are two dimensional: 
x1 = ( x1

1 , x1
2 ) , x2 = ( x2

1 , x2
2 ) , …xN = ( xN

1 , xN
2 ). 

One can draw the nearest-neighbor regions in input space. 

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2 

The relative scalings in the distance metric affect region shapes 

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2 
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Euclidean distance metric 

Other Metrics… 
n  Mahalanobis, Rank-based, Correlation-based,…  
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Or equivalently, 
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Notable distance metrics  
(and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis          (here, 
Σ on the previous slide is not 
necessarily diagonal, but is 
symmetric 
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Consistency of 1-NN 

n  Consider an estimator fn trained on n examples 
¨  e.g., 1-NN, neural nets, regression,... 

n  Estimator is consistent if true error goes to zero as 
amount of data increases 
¨  e.g., for no noise data, consistent if: 

n  Regression is not consistent! 
¨  Representation bias 

n  1-NN is consistent (under some mild fineprint)  

What about variance??? 

©Carlos Guestrin 2005-2013 56 

1-NN overfits? 
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k-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?      

  k 
1.  A weighting function (optional)     

 Unused 

2.  How to fit with the local points?       
 Just predict the average output among the k nearest neighbors. 

©Carlos Guestrin 2005-2013 58 

k-Nearest Neighbor (here k=9) 

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies. 
What can we do about all the discontinuities that k-NN gives us? 
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Weighted k-NNs 

n  Neighbors are not all the same 

©Carlos Guestrin 2005-2013 60 

Kernel regression 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 All of them 
3.  A weighting function (optional)     

 πi = exp(-D(xi, query)2 / ρ2)     
Nearby points to the query are weighted strongly, far points 

weakly. The ρ parameter is the Kernel Width. Very 
important. 

4.  How to fit with the local points?     
 Predict the weighted average of the outputs:   
 predict = Σπiyi / Σπi 
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Weighting functions 

πi = exp(-D(xi, query)2 / ρ2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typically optimize ρ using 
gradient descent 

(Our examples use Gaussian) 

©Carlos Guestrin 2005-2013 62 

Kernel regression predictions 

Increasing the kernel width ρ means further away points get an 
opportunity to influence you. 
As ρà∞, the prediction tends to the global average. 

ρ=10 
 

ρ=20 
 

ρ=80 
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Kernel regression on our test cases 

ρ=1/32 of x-axis width. ρ=1/32 of x-axis width. ρ=1/16 axis width. 

Choosing a good ρ is important. Not just for Kernel Regression, but for 
all the locally weighted learners we’re about to see. 
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Kernel regression can look bad 

ρ = Best. ρ = Best. ρ = Best. 

Time to try something more powerful… 
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Locally weighted regression 

Kernel regression: 
 Take a very very conservative function approximator 
called AVERAGING. Locally weight it. 

Locally weighted regression: 
 Take a conservative function approximator called 
LINEAR REGRESSION. Locally weight it. 
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Locally weighted regression 

n  Four things make a memory based learner: 
n  A distance metric       

 Any 
n  How many nearby neighbors to look at?     

  All of them 
n  A weighting function (optional)     

 Kernels 
¨  πi = exp(-D(xi, query)2 / ρ2)     

n  How to fit with the local points?   
 General weighted regression:     

ŵq =
w

argmin π q
k y k −wTx k( )

k=1

N

∑
2
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How LWR works 

Query 

Linear regression 
§  Same parameters for  
   all queries 

Locally weighted regression 
§  Solve weighted linear regression 
   for each query 

ŵ = XTX( )
−1
XTY

Π =

π1 0 0 0
0 π 2 0 0
0 0  0
0 0 0 π n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

wq = ΠX( )TΠX( )
−1
ΠX( )TΠY
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Another view of LWR 

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145. 
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LWR on our test cases 

ρ = 1/16 of x-axis width. ρ = 1/32 of x-axis width. ρ = 1/8 of x-axis width. 
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Locally weighted polynomial regression 

Kernel Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/100 x-axis 

LW Linear Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/40 x-axis 

LW Quadratic Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/15 x-axis 

Local quadratic regression is easy: just add quadratic terms to the X 
matrix. As the regression degree increases, the kernel width can 
increase without introducing bias. 
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Curse of dimensionality for 
instance-based learning 

n  Must store and retreve all data! 
¨  Most real work done during testing 
¨  For every test sample, must search through all dataset – very slow! 
¨  There are (sometimes) fast methods for dealing with large datasets 

n  Instance-based learning often poor with noisy or irrelevant 
features 
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Curse of the irrelevant feature 
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What you need to know about 
instance-based learning 

n  k-NN 
¨  Simplest learning algorithm 
¨  With sufficient data, very hard to beat “strawman” approach 
¨  Picking k? 

n  Kernel regression 
¨  Set k to n (number of data points) and optimize weights by gradient 

descent 
¨  Smoother than k-NN 

n  Locally weighted regression 
¨  Generalizes kernel regression, not just local average 

n  Curse of dimensionality 
¨  Must remember (very large) dataset for prediction 
¨  Irrelevant features often killers for instance-based approaches 
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