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n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

n  Example: MoG (derivation soon… + HW) 
1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. µk,⌃k :
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n  More broadly applicable than just to mixture models 
considered so far 
 

n  Model: 

 
n  Interested in maximizing (wrt    ): 

n  Special case:  

Expectation Maximization (EM) – 
Setup 

x

y

✓

✓

p(x | ✓) =
X

y

p(x, y | ✓)

x = g(y)

observable – “incomplete” data 
not (fully) observable – “complete” data 
parameters 
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n  Step 1 
¨  Rewrite desired likelihood in terms of complete data terms 

n  Step 2 
¨  Assume estimate of parameters  
¨  Take expectation with respect to 

 

Expectation Maximization (EM) – 
Derivation 

p(y | ✓) = p(y | x, ✓)p(x | ✓)

✓̂
p(y | x, ✓̂)
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n  Step 3 
¨  Consider log likelihood of data at any     relative to log likelihood at       

 
n  Aside: Gibbs Inequality 
    Proof: 

 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓)� L
x

(✓̂)

Ep[log p(x)] � Ep[log q(x)]
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n  Step 4 
¨  Determine conditions under which log likelihood at    exceeds that at 
Using Gibbs inequality: 
 
 
 
If  
 
Then 

 
 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓) � L
x

(✓̂)

L
x

(✓)� L
x

(✓̂) = [U(✓, ✓̂)� U(✓̂, ✓̂)]� [V (✓, ✓̂)� V (✓̂, ✓̂)]
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n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

Motivates EM Algorithm 
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n  E-Step   Compute 
n  M-Step  Compute 

n  Consider            i.i.d.   
 
 
 

Example – Mixture Models 

U(✓,

ˆ

✓

(t)
) = E[log p(y | ✓) | x, ˆ✓(t)]

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))

y

i = {zi, xi}

Eqt [log p(y | ✓)] =
X

i

Eqt [log p(x
i
, z

i | ✓)] =

p(xi
, z

i | ✓) = ⇡zi
p(xi | �zi) =
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n  Bound log likelihood: 
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Coordinate Ascent Behavior 

L
x

(✓) =

�
L
x

(✓̂(t)) =

Figure from 
KM textbook 

U(✓, ✓̂(t)) + V (✓, ✓̂(t))

U(✓̂(t), ✓̂(t)) + V (✓̂(t), ✓̂(t))
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n  Since Gibbs inequality is satisfied with equality only if p=q, 
any step that changes     should strictly increase likelihood 
 

n  In practice, can replace the M-Step with increasing U instead 
of maximizing it (Generalized EM) 
 

n  Under certain conditions (e.g., in exponential family), can 
show that EM converges to a stationary point of 
 

n  Often there is a natural choice for y … has physical meaning 
 

n  If you want to choose any y, not necessarily x=g(y), replace 
        in U with   

Comments on EM 

✓

L
x

(✓)

p(y | ✓) p(y, x | ✓)



6 

©Emily Fox 2013 11 

n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}

12 

What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Be happy with this kind of probabilistic analysis 
n  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 
n  EM is coordinate ascent 

©Carlos Guestrin 2005-2013 
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Dimensionality reduction 

n  Input data may have thousands or millions of 
dimensions! 
¨ e.g., text data has  

n  Dimensionality reduction: represent data with 
fewer dimensions 
¨ easier learning – fewer parameters 
¨ visualization – hard to visualize more than 3D or 4D 
¨ discover “intrinsic dimensionality” of data 

n  high dimensional data that is truly lower dimensional  

©Carlos Guestrin 2005-2013 
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Lower dimensional projections 

n  Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features 

n  Let’s see this in the unsupervised setting  
¨  just X, but no Y 

©Carlos Guestrin 2005-2013 
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Linear projection and reconstruction 

x1 

x2 

project into 
1-dimension z1 

reconstruction: 
only know z1,  

     what was (x1,x2) 

©Carlos Guestrin 2005-2013 
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Principal component analysis – 
basic idea 
n  Project n-dimensional data into k-dimensional 

space while preserving information: 
¨ e.g., project space of 10000 words into 3-dimensions 
¨ e.g., project 3-d into 2-d 

n  Choose projection with minimum reconstruction 
error 

©Carlos Guestrin 2005-2013 
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Linear projections, a review 

n  Project a point into a (lower dimensional) space: 
¨ point: x = (x1,…,xd)  
¨ select a basis – set of basis vectors – (u1,…,uk) 

n  we consider orthonormal basis:  
¨  ui•ui=1, and ui•uj=0 for i≠j 

¨ select a center – x, defines offset of space  
¨ best coordinates in lower dimensional space defined 

by dot-products: (z1,…,zk), zi = (x-x)•ui 
n  minimum squared error 

©Carlos Guestrin 2005-2013 



10 

19 

PCA finds projection that minimizes 
reconstruction error 
n  Given N data points: xi = (x1

i,…,xd
i), i=1…N 

n  Will represent each point as a projection: 

¨           where:                           and  

n  PCA: 
¨  Given k<<d, find (u1,…,uk)  
    minimizing reconstruction error: 

x1 

x2 

N 

N 

N 

©Carlos Guestrin 2005-2013 

20 

Understanding the reconstruction 
error 

¨ Given k<<d, find (u1,…,uk)  
    minimizing reconstruction error: 

N 
d 

n  Note that xi can be represented 
exactly by d-dimensional projection: 

n  Rewriting error: 

©Carlos Guestrin 2005-2013 
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Reconstruction error and 
covariance matrix 

N 

N 

N 
d 
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Minimizing reconstruction error and 
eigen vectors 

N 
d 

n  Minimizing reconstruction error equivalent to picking 
orthonormal basis (u1,…,ud) minimizing: 

n  Eigen vector: 

n  Minimizing  reconstruction error equivalent to picking (uk+1,
…,ud) to be eigen vectors with smallest eigen values 

©Carlos Guestrin 2005-2013 
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Basic PCA algoritm 

n  Start from m by n data matrix X 
n  Recenter: subtract mean from each row of X 

¨  Xc ← X – X 
n  Compute covariance matrix: 

¨   Σ ← 1/N Xc
T Xc 

n  Find eigen vectors and values of Σ  
n  Principal components: k eigen vectors with 

highest eigen values 

©Carlos Guestrin 2005-2013 
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PCA example 

©Carlos Guestrin 2005-2013 
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PCA example – reconstruction  

only used first principal component 

©Carlos Guestrin 2005-2013 
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Eigenfaces [Turk, Pentland ’91] 

n  Input images: n  Principal components: 

©Carlos Guestrin 2005-2013 
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Eigenfaces reconstruction 

n  Each image corresponds to adding 8 principal 
components: 

©Carlos Guestrin 2005-2013 
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Scaling up 

n  Covariance matrix can be really big! 
¨   Σ is d by d 
¨ Say, only 10000 features 
¨  finding eigenvectors is very slow… 

n  Use singular value decomposition (SVD) 
¨  finds to k eigenvectors 
¨ great implementations available, e.g., python, R, 

Matlab svd 

©Carlos Guestrin 2005-2013 
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SVD 
n  Write X = W S VT 

¨  X ← data matrix, one row per datapoint 
¨  W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace  
¨  S ← singular value matrix, diagonal matrix 

n  in our setting each entry is eigenvalue λj 
¨  VT ← singular vector matrix 

n  in our setting each row is eigenvector vj 

©Carlos Guestrin 2005-2013 
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PCA using SVD algoritm 

n  Start from m by n data matrix X 
n  Recenter: subtract mean from each row of X 

¨  Xc ← X – X 
n  Call SVD algorithm on Xc – ask for k singular vectors 

n  Principal components: k singular vectors with highest 
singular values (rows of VT) 
¨  Coefficients become: 

©Carlos Guestrin 2005-2013 
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What you need to know 

n  Dimensionality reduction 
¨ why and when it’s important 

n  Simple feature selection 
n  Principal component analysis 

¨ minimizing reconstruction error 
¨  relationship to covariance matrix and eigenvectors 
¨ using SVD 
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