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Clustering

K-means

Machine Learning — CSE546
Emily Fox
University of Washington
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©Carlos Guestrin 2005- 2013

mm@@m)slzy

= s
=2
ol & ™
s
Rt bl
Cs -

mu wo
!U((,\e %48

Set of Images

(’o\l\(’.fmk

@Carlos Guestrin 20052013 [Goldberger et al.] 2




= Auton’s Graphics [

x
[aS

K-means
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k | *f
cluster Center
locations

A
[ tnfv\ 0.sf

]

0.8

3. Each datapoint finds | o.4
out which Center it's
closest to.

4, Each Center finds
the centroid of the
points it owns

0,2

©Carlos Guestrin 2005-2013 3

K-means
"
= Randomly initialize k centers ~ (or “war-&\/”)
O M(O) = M1(0),___, Mk((f)’\ .\UIA‘UOV\

(_o'\!luls(l‘ when  nothin woves ((\0 ?W't CL‘W" rts ""3{0/}
= Classify: Assign eachpoint j€{1,...N} to nearest

center: B S =

0 W) — arg min [|u; — x|

K ‘{|2 v fix M/ o‘)tc

¥ :

m}‘ C(j)‘«l‘ By Jd" oLs. w &ssoc w/ clusear k

= Recenter: y; becomes centroid of its point: 5% C{ P

oo+ ; a2 .
pi Y —argmin Y (lu—al? o, 22 ¥
- joG)=i ! Az e

1 Equivalent to u; < average of its points! HJ L €Oy 6)

©Carlos Guestrin 2005-2013 4




Mixtures of
Gaussians

Machine Learning — CSE546
Emily Fox
University of Washington

November 4, 2013
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(One) bad case for k-means
" JEE
m Clusters may overlap

m Some clusters may be
“‘wider” than others

-
lone.
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Density as Mixture of Gaussians

t‘\‘u“/
: i 4 /
P p(a|m, 112 =

Mixture of 3 Gaussians

m Approximate density with a mixture of Gaussians&lmkliug

—_—

éwk‘\)( X; \ Mk,ikB
k<
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Clustering our Observations
" JEEE

m Imagine we have an assignment of each x' to a Gaussian
Our actual observations

b
\S( o™
05
\0’\"‘
W
0
0 05 1 0 0.5 J 1 y
Complete data labeled " 4o Jeke
by true cluster assignments |ntom \)IL ‘

C. Bishop.Pattern Recognition & Machine Learning




Clustering our Observations
"
m Imagine we have an assignment of each x/ to a Gaussian

m [ntroduce latent cluster .
indicator variable z’ (("\

! 2“61‘/ ) Kf
Pr( ?"ZU:'\T

m Then we have

i iz% .
(@277, p, 2) = N0 bw, 2

05

0 Param Lst. s easy i€ we
0 0.5 1 have Slz g
Complete data labeled ._;\ A“WP\‘ $ into \A 6av$l.
by true cluster assignments St

C. Bishop.Pattern Recognition & Machine Learning

Clustering our Observations
" JEE

m We must infer the cluster assignments from the observatllons
« esponsibn lit s

m Posterior probabilities of
1 assignments to h cluster

*given* model parameters:

Tik = p(zz - k‘xiﬁﬁaﬂ? E) =

- m\(%‘ lm,ik)

0.5

0 0.5 1 J o
Soft assignments to clusters . ] |
’ motivakes an terstive a(j

C. Bishop.Pattern Recognition & Machine Learging




Unsupervised Learning:
it |

Sometimes easy

©Carlos Guestrin 2005-2013

Sometimes impossible

and sometimes in between

Summary of GMM Concept
* JEEE

m Estimate a density based on x7,...,xV

0.5

p(a'|m, 1, 2)

0 05 1
Complete data labeled

by true cluster assignments

Surface Plot of Joint Density,

©Emily Fox 2013

Marginalizing Cluster Assignments

12




Summary of GMM Components

* JE .
= Observations rte Ry i=1,2,...,

N
= Hidden cluster labels 2; € {1,2,..., K}, i=1,2,...,N
m Hidden mixture means wr €RY kE=1,2,....K

K

m Hidden mixture covariances ;. € RdXd, k=1,2,...,

K
m Hidden mixture probabilities Tk, Z T =
k=1
Gaussian mixture marginal and conditional likelihood :
CHUNTIDY Z mi p(a'|2' p, X)

zt=1

p(xi’2i7 122 E) = N(Ii‘,uzia Ezl)

©Emily Fox 2013 13

Expectation
Maximization

Machine Learning — CSE546
Emily Fox
University of Washington

November 6, 2013
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Next... back to Density Estimation

" JEE
What if we want to do density estimation with
multimodal or clumpy data?

= Auton’s Graphics |

©Carlos Guestrin 2005-2013 15

But we don't see class labels!!!
" "
m MLE:
argmax [ ], P(Z,x)

m But we don’t know Z'
m Maximize marginal likelihood:
argmax []; P(x') = argmax []; 34K P(z'=k,x)

©Carlos Guestrin 2005-2013 16




Special case: spherical Gaussians

. ang harg ﬁ;ignments

P(Z =k x")=;exp[—l(x" -u )T > (xi —u )]P(zi =k)
| Qm)"™ IZ, I" 2 A ¢

m [If P(X|z=k) is spherical, with same o for all classes:
S 1 . 2
Px'lz =k)ox exp[— "X’ - /,zk” ]

207

m [f each x belongs to one class C(i) (hard assignment), marginal likelihood:

N K o N . | 2
I;IZP(X’,z’ =k)oc1:l[exp[— = ||x’ —Uca)” ]

1

m Same as K-means!!!

©Carlos Guestrin 2005-2013 17

EM: “Reducing” Unsupervised
. gaarning fo Sugervised Learning

m If we knew assignment of points to* o+, .
classes = Supervised Learning! * < o

m Expectation-Maximization (EM)
Guess assignment of points to
classes

= In standard (“soft”) EM: each point
associated with prob. of being in each
class

Recompute model parameters
Iterate

©Carlos Guestrin 2005-2013 18




Generic Mixture Models
" S HoG Example:

®
m Observations: BN

m Parameters:

m Likelihood:

m Ex. 2'= country of origin, " = height of it" person
k' mixture component = distribution of heights in country k

©Emily Fox 2013 19

ML Estimate of Mixture Model Params
" SN
m Log likelihood
Lo (0) £ logp({z'} | 6) = Zlogpr 2| 6)

m \Want ML estimate
GML _

m Neither convex nor concave and local optima

©Emily Fox 2013 20
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If “complete” data were observed...
" S

m Assume class labels 2’ were observed in addition to x*
L (0) = logp(a’, 2" | 0)

m Compute ML estimates
Separates over clusters k!

m Example: mixture of Gaussians (MoG) 6 = {m, ux, S},

©Emily Fox 2013 21

lterative Algorithm
" S

m Motivates a coordinate ascent-like algorithm:
Infer missing values 2t given estimate 9f parameters ()
Optimize parameters to produce new @ given “filled in” data 2t
Repeat
m Example: MoG (derivation soon... + HW)
Infer “responsibilities”
rie = p(z' =k | :I:i,é(t_l)) =

Optimize parameters
max w.r.t. mg :

max w.r.t. g, 2 :

©Emily Fox 2013 22
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o
E.M. Convergence \
" J b

e EMis coordinate

ascent on an s ;\
interesting potential . 7} . I e

function U S 1 2 « v

» Coord. ascent for -
bounded pot. func. 2
convergence to a
local optimum hl
guaranteed

m This algorithm is REALLY USED. And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data

©Carlos Guestrin 2005-2013
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After first iteration

©Emily Fox 2013

After 2nd iteration
= JEE

/‘ \(’\

® |
\
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N
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After 3rd iteration

" J
(e f‘h
. p:0.3(‘ \
. \\ . pég;.307 \\
e

\ 5
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After 5th iteration

©Emily Fox 2013
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After 20th iteration
= JEE

©Emily Fox 2013
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GMM clustering of the assay data
" JEE
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Resulting
Density
Estimator

ooooooooooooo
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Expectation Maximization (EM) —

§gtup

m More broadly applicable than just to mixture models
considered so far

m Model: & observable — “incomplete” data
Y not (fully) observable — “complete” data
@ parameters

m Interested in maximizing (wrt 8):
p(x | 0) Zp z,y | 0)

m Special case:

z = g(y)

©Emily Fox 2013 35

Expectation Maximization (EM) —
Derivation

m Step 1

Rewrite desired likelihood in terms of complete data terms

p(y 1 0)=ply|z,0)p(x]|0)

m Step 2
Assume estimate of parameters 9
Take expectation with respect to p(y | x 9)

©Emily Fox 2013 36
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Expectation Maximization (EM) —

. Dgrivation

m Step 3

Consider log likelihood of data at any 0 relative to log likelihood at 6

m Aside: Gibbs Inequality E,[log p(z)] > E,|log ¢(x)]
Proof:

©Emily Fox 2013

Expectation Maximization (EM) —
Derivation

L.(0) — L. (0) = [U(9,6) — U(9,0)] — [V(8,0) — V(9,0)]

m Step 4 A
Determine conditions under which log likelihood at 0 exceeds that at
Using Gibbs inequality:

ooooooooooooo

19



Motivates EM Algorithm
"SI

m Initial guess:
m Estimate at iteration t:

m E-Step

Compute

m M-Step

Compute

©Emily Fox 2013 39

Example — Mixture Models
" O

m E-Step Compute U(8,0") = Ellogp(y | 0) | =,0]
= M-Step Compute g+ :argmezle(H,é(t))

m Consider ' = {z%, 2"} i.id.
p(:ci, 2 | 0) = Wzip(.fi | i) =
El]t [logp(y ’ 0)] = ZE% [logp(xi7zi | 9)] =

©Emily Fox 2013 40
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Coordinate Ascent Behavior

“
= Bound log likelihood: X
L,(0) =U(6,0") + Vv (0,01)
>

L (00 = U@W, 60 + v(®,60)

LEIN,
0/ V\
X *"\.\ Figure from
e o
A7 TN\ A KM textbook
/ : L
|~ A
L\
\
H
et et+1 et+2

©Emily Fox 2013 a

Comments on EM

* JEE—
m Since Gibbs inequality is satisfied with equality only if p=q,
any step that changes @ should strictly increase likelihood

m In practice, can replace the M-Step with increasing U instead
of maximizing it (Generalized EM)

m Under certain conditions (e.g., in exponential family), can
show that EM converges to a stationary point of 1. (0)

m Often there is a natural choice for y ... has physical meaning

m If you want to choose any y, not necessarily x=g(y), replace
p(y | 6) in Uwith p(y, z | 0)

©Emily Fox 2013 42
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Initialization

m In mixture model case where yi = {zi, xl} there are
many ways to initialize the EM algorithm

m Examples:

Choose K observations at random to define each cluster.
Assign other observations to the nearest “centriod” to form
initial parameter estimates

Pick the centers sequentially to provide good coverage of data

Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed

m Can be quite important to convergence rates in practice

©Emily Fox 2013 43

What you should know
N

K-means for clustering:
algorithm
converges because it's coordinate ascent

EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

Be happy with this kind of probabilistic analysis

Remember, E.M. can get stuck in local minima, and
empirically it DOES

EM is coordinate ascent

©Carlos Guestrin 2005-2013 44
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