Boosting continued Machine Learning – CSE546 Carlos Guestrin University of Washington October 14, 2013 CCarlos Guestrin 2005-2013

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - □ Classifiers that are most "sure" will vote with more conviction
 - □ Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

 H(X) = Sign (\frac{7}{2} \text{ dt ht (X)})

 Voke weight

 The (X) = \frac{1}{2} \text{ if } X; = 1

 If \frac{1}{2} \text{ if encil has word "(SES46" -> nospan
- But how do you ???
 - □ force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

©Carlos Guestrin 2005-201

Why choose α_t for hypothesis h_t this way?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

For boolean target function, this is accomplished by [Freund & Schapire '97];

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework!

©Carlos Guestrin 2005-2013

Strong, weak classifiers

If each classifier is (at least slightly) better than random

$$\Box$$
 $\epsilon_t < 0.5$

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x^{j}) \neq y^{j}] \leq \prod_{t=1}^{N} Z_{t} \leq \exp\left(-2 \sum_{t=1}^{N} (1/2 - \xi_{t})^{2}\right)$$

$$= \prod_{t=1}^{N} e^{-2(\frac{1}{2} - \xi_{t})^{2}}$$

■ Is it hard to achieve better than random training error? אבינ ב אן איוון ביינים און איינים אייני

Logistic regression and Boosting

Logistic regression:

Minimize loss fn

$$\sum_{j=1}^{N} \ln(1 + \exp(-y^{j} f(x^{j})))$$

Define
$$f(x) = w_0 + \sum_i w_i x_i$$

where features x_i are predefined

Weights w_i are learned in joint optimization

Boosting:

Minimize loss fn

$$\sum_{j=1}^{N} \exp(-y^{j} f(x^{j}))$$

where $h_t(x)$ defined dynamically to fit data (not a linear classifier)

 Weights α_t learned incrementally

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - □ Weak classifier slightly better than random on training data
 - ☐ Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - □ Similar loss functions
 - ☐ Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - □ Boosted decision stumps!
 - □ Very simple to implement, very effective classifier

©Carlos Guestrin 2005-2013

13

Projects

- An opportunity to exercise what you learned and to learn new things
- Individually or groups of two
- Must involve real data
 - ☐ Must be data that you have available to you by the time of the project proposals
- Must involve machine learning
- It's encouraged to be related to your research, but must be something new you did this quarter
 - □ Not a project you worked on during the summer, last year, etc.
- Sample projects on course website
- Wed., October 23 at 9:00am: Project Proposals
- Mon., November 11 at 9:00am: Project Milestone
- Wed., December 4, 3-5pm: Poster Session
- Mon., December 9 at 9:00am: Project Report

©2005-2013 Carlos Guestrin

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier h_w(x) that is non-linear in parameters w, e.g.,
 - □ Decision trees, boosting, nearest neighbor, neural networks...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW. Later this quarter, we'll see that these options are not that different)

©Carlos Guestrin 2005-2013

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - \square e.g., ϕ = A \land B $\lor \neg$ A \land C ((A and B) or (not A and C))

©Carlos Guestrin 2005-2013

27

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - ☐ Start from empty decision tree ⁵
 - □ Split on next best attribute (feature)
 - □ Recurse ← on Subst of dak consistent with each left

©Carlos Guestrin 2005-2013

Entropy

Entropy H(X) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

5-2013

Andrew Moore's Entropy in a nutshell

Low Entropy

High Entropy

©Carlos Guestrin 2005-2013

Learning decision tree Start from empty decision tree Split on next best attribute (feature) Use, for example, information gain to select attribute Split on arg $\max_i IG(X_i) = \arg\max_i H(Y) - H(Y \mid X_i)$ Recurse When do | stop? 1. when info gain is Small?? 2. entropy of an leaf, correct class 3. nothing to Split on why all fedges hip.)?

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

©Carlos Guestrin 2005-2013

41

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Proposed Base Case 3:

If all attributes have zero information gain then don't recurse

•Is this a good idea?

©Carlos Guestrin 2005-2013

Basic Decision Tree Building Summarized

BuildTree(DataSet,Output)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - $\ \square$ Create and return a non-leaf node with n_X children.
 - $\hfill\Box$ The $i{\ensuremath{{}^{\prime}}} th$ child should be built by calling

BuildTree(DS_i,Output)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

go for ever

©Carlos Guestrin 2005-2013