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Clustering images 

2 [Goldberger et al.] 

Set of Images 

©Carlos Guestrin 2005-2013 



2 

Clustering web search results 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 9 ©Carlos Guestrin 2005-2013 

K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…N} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
10 ©Carlos Guestrin 2005-2013 
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What is K-means optimizing?  

n  Potential function F(µ,C) of centers µ and point 
allocations C: 

¨    

n  Optimal K-means: 
¨ minµminC F(µ,C)  

11 

N 
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Does K-means converge??? Part 1 

n  Optimize potential function: 

n  Fix µ, optimize C 
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Does K-means converge??? Part 2 

n  Optimize potential function: 

n  Fix C, optimize µ	
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Coordinate descent algorithms 

n  Want: mina minb F(a,b) 
n  Coordinate descent: 

¨  fix a, minimize b 
¨  fix b, minimize a 
¨  repeat 

n  Converges!!! 
¨  if F is bounded 
¨  to a (often good) local optimum  

n  as we saw in applet (play with it!) 
¨  (For LASSO it converged to the global  

optimum, because of convexity) 

n  K-means is a coordinate descent algorithm! 
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Mixtures of 
Gaussians 
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16 

(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 

©Carlos Guestrin 2005-2013 
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n  Estimate a density based on x1,…,xN 

Density Estimation 

©Emily Fox 2013 17 

Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Gaussians in d Dimensions 

©Carlos Guestrin 2005-2013 20 

P(x) = 1
(2π )m/2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )

#

$%
&

'(
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi|⇡, µ,⌃) =

Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Complete data labeled 
by true cluster assignments 
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)
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n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 

©Emily Fox 2013 24 

p(xi|zi,⇡, µ,⌃) =
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Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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rik = p(zi = k|xi
,⇡, µ,⌃) =

26 

Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 

©Carlos Guestrin 2005-2013 
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n  Estimate a density based on x1,…,xN 

Summary of GMM Concept 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 

Complete data labeled 
by true cluster assignments 

(a)
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p(xi|⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi|µzi
,⌃zi)

Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1

©Emily Fox 2013 28 

x

i

Gaussian mixture marginal and conditional likelihood : 

p(xi|zi, µ,⌃) = N (xi|µzi
,⌃zi)

p(xi|⇡, µ,⌃) =
KX

zi=1

⇡zi
p(xi|zi, µ,⌃)
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Expectation 
Maximization 

Machine Learning – CSE546 
Emily Fox 
University of Washington 
 

November 6, 2013 
©Carlos Guestrin 2005-2013 

30 

Next…   back to Density Estimation 
 
What if we want to do density estimation with 
multimodal or clumpy data? 

©Carlos Guestrin 2005-2013 
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But we don’t see class labels!!! 

n  MLE: 
¨ argmax ∏i P(zi,xi) 

n  But we don’t know zi  
n  Maximize marginal likelihood: 

¨ argmax ∏i P(xi) = argmax ∏i ∑k=1
K P(zi=k,xi) 

©Carlos Guestrin 2005-2013 
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Special case: spherical Gaussians 
and hard assignments 

n  If P(X|z=k) is spherical, with same σ for all classes: 

n  If each xi belongs to one class C(i) (hard assignment), marginal likelihood: 

n  Same as K-means!!! 

P(xi | zi = k)∝ exp − 1
2σ 2 x

i −µk

2#

$%
&

'(

P(xi, zi = k)
k=1

K

∑
i=1

N

∏ ∝ exp − 1
2σ 2 x

i −µC(i)

2%

&'
(

)*i=1

N

∏

P(zi = k,xi ) = 1
(2π )m/2 || Σk ||

1/2 exp −
1
2
xi −µk( )

T
Σk
−1 xi −µk( )#

$%
&

'(
P(zi = k)
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Supervised Learning of Mixtures 
of Gaussians 

n  Mixtures of Gaussians: 
¨  Prior class probabilities:  P(z=k) 
¨  Likelihood function per class:  P(x|z=k) 

n  Suppose, for each data point, we know location x and class z 
¨  Learning is easy…  J 

¨  For prior P(z) 

¨  For likelihood function: 

©Carlos Guestrin 2005-2013 33 

EM: “Reducing” Unsupervised 
Learning to Supervised Learning  

n  If we knew assignment of points to 
classes è Supervised Learning! 

n  Expectation-Maximization (EM) 
¨ Guess assignment of points to 

classes 
n  In standard (“soft”) EM: each point 

associated with prob. of being in each 
class 

¨ Recompute model parameters 
¨  Iterate  

©Carlos Guestrin 2005-2013 34 
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Form of Likelihood 

©Emily Fox 2013 35 

n  Conditioned on class of point xi... 

n  Marginalizing class assignment: 

p(xi | zi, µ,⌃) =

p(xi | ⇡, µ,⌃) =

Gaussian Mixture Model 

©Emily Fox 2013 36 

n  Most commonly used mixture model 
n  Observations: 

n  Parameters: 

n  Likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 

x

izi
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Example 

©Emily Fox 2013 37 

(Taken from Kevin Murphy’s ML textbook) 
n  Data: gene expression levels 
n  Goal: cluster genes with similar expression trajectories 

 

Mixture models are useful for… 

©Emily Fox 2013 38 

n  Density estimation 
¨ Allows for multimodal density 

n  Clustering 
¨ Want membership information for each observation 

n  e.g., topic of current document 
¨ Soft clustering: 

¨ Hard clustering: 

p(zi = k | xi
, ✓) =

z

i⇤
= argmax

k
p(z

i
= k | xi

, ✓) =
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Issues  

©Emily Fox 2013 39 

n  Label switching 
¨ Color = label does not matter 
¨ Can switch labels and likelihood 

is unchanged 
 

n  Log likelihood is not convex in the parameters 
¨ Problem is simpler for “complete data likelihood” 

ML Estimate of Mixture Model Params 

©Emily Fox 2013 40 

n  Log likelihood 

 
n  Want ML estimate 

n  Neither convex nor concave and local optima 

L

x

(✓) , log p({xi} | ✓) =
X

i

log

X

z

i

p(x

i

, z

i | ✓)

✓̂ML =
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n  Assume class labels     were observed in addition to   

n  Compute ML estimates 
¨  Separates over clusters k! 

n  Example: mixture of Gaussians (MoG) 

If “complete” data were observed… 

zi x

i

L

x,z

(✓) =

X

i

log p(x

i

, z

i | ✓)

✓ = {⇡k, µk,⌃k}Kk=1

©Emily Fox 2013 42 

n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

n  Example: MoG (derivation soon… + HW) 
1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. µk,⌃k :
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E.M. Convergence 

n  This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data 

•  EM is coordinate 
ascent on an 
interesting potential 
function 

•  Coord. ascent for 
bounded pot. func. è 
convergence to a 
local optimum 
guaranteed 

©Carlos Guestrin 2005-2013 
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Gaussian Mixture Example: Start 

©Emily Fox 2013 
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After first iteration 

©Emily Fox 2013 
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After 2nd iteration 

©Emily Fox 2013 
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47 

After 3rd iteration 

©Emily Fox 2013 
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After 4th iteration 

©Emily Fox 2013 
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After 5th iteration 

©Emily Fox 2013 
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After 6th iteration 
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After 20th iteration 

©Emily Fox 2013 

52 

Some Bio Assay data 

©Emily Fox 2013 
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GMM clustering of the assay data 

©Emily Fox 2013 
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Resulting 
Density 
Estimator 

©Emily Fox 2013 
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n  More broadly applicable than just to mixture models 
considered so far 
 

n  Model: 

 
n  Interested in maximizing (wrt    ): 

n  Special case:  

Expectation Maximization (EM) – 
Setup 

x

y

✓

✓

p(x | ✓) =
X

y

p(x, y | ✓)

x = g(y)

observable – “incomplete” data 
not (fully) observable – “complete” data 
parameters 

©Emily Fox 2013 56 

n  Step 1 
¨  Rewrite desired likelihood in terms of complete data terms 

n  Step 2 
¨  Assume estimate of parameters  
¨  Take expectation with respect to 

 

Expectation Maximization (EM) – 
Derivation 

p(y | ✓) = p(y | x, ✓)p(x | ✓)

✓̂
p(y | x, ✓̂)
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n  Step 3 
¨  Consider log likelihood of data at any     relative to log likelihood at       

 
n  Aside: Gibbs Inequality 
    Proof: 

 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓)� L
x

(✓̂)

Ep[log p(x)] � Ep[log q(x)]

©Emily Fox 2013 58 

n  Step 4 
¨  Determine conditions under which log likelihood at    exceeds that at 
Using Gibbs inequality: 
 
 
 
If  
 
Then 

 
 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓) � L
x

(✓̂)

L
x

(✓)� L
x

(✓̂) = [U(✓, ✓̂)� U(✓̂, ✓̂)]� [V (✓, ✓̂)� V (✓̂, ✓̂)]
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n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

Motivates EM Algorithm 

©Emily Fox 2013 60 

n  E-Step   Compute 
n  M-Step  Compute 

n  Consider            i.i.d.   
 
 
 

Example – Mixture Models 

U(✓,

ˆ

✓

(t)
) = E[log p(y | ✓) | x, ˆ✓(t)]

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))

y

i = {zi, xi}

Eqt [log p(y | ✓)] =
X

i

Eqt [log p(x
i
, z

i | ✓)] =

p(xi
, z

i | ✓) = ⇡zi
p(xi | �zi) =
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n  Bound log likelihood: 

 
 
 

©Emily Fox 2013 61 

Coordinate Ascent Behavior 

L
x

(✓) =

�
L
x

(✓̂(t)) =

Figure from 
KM textbook 

U(✓, ✓̂(t)) + V (✓, ✓̂(t))

U(✓̂(t), ✓̂(t)) + V (✓̂(t), ✓̂(t))

©Emily Fox 2013 62 

n  Since Gibbs inequality is satisfied with equality only if p=q, 
any step that changes     should strictly increase likelihood 
 

n  In practice, can replace the M-Step with increasing U instead 
of maximizing it (Generalized EM) 
 

n  Under certain conditions (e.g., in exponential family), can 
show that EM converges to a stationary point of 
 

n  Often there is a natural choice for y … has physical meaning 
 

n  If you want to choose any y, not necessarily x=g(y), replace 
        in U with   

Comments on EM 

✓

L
x

(✓)

p(y | ✓) p(y, x | ✓)
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n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}

64 

What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Be happy with this kind of probabilistic analysis 
n  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 
n  EM is coordinate ascent 

©Carlos Guestrin 2005-2013 


