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Clustering images 
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Clustering web search results 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 9 ©Carlos Guestrin 2005-2013 

K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…N} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
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What is K-means optimizing?  

n  Potential function F(µ,C) of centers µ and point 
allocations C: 

¨    

n  Optimal K-means: 
¨ minµminC F(µ,C)  

11 

N 

©Carlos Guestrin 2005-2013 

Does K-means converge??? Part 1 

n  Optimize potential function: 

n  Fix µ, optimize C 
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Does K-means converge??? Part 2 

n  Optimize potential function: 

n  Fix C, optimize µ	
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Coordinate descent algorithms 

n  Want: mina minb F(a,b) 
n  Coordinate descent: 

¨  fix a, minimize b 
¨  fix b, minimize a 
¨  repeat 

n  Converges!!! 
¨  if F is bounded 
¨  to a (often good) local optimum  

n  as we saw in applet (play with it!) 
¨  (For LASSO it converged to the global  

optimum, because of convexity) 

n  K-means is a coordinate descent algorithm! 
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Mixtures of 
Gaussians 

Machine Learning – CSE546 
Emily Fox 
University of Washington 
 

November 4, 2013 
©Carlos Guestrin 2005-2013 

16 

(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 
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n  Estimate a density based on x1,…,xN 

Density Estimation 

©Emily Fox 2013 17 

Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Contour Plot of Joint Density 
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Gaussians in d Dimensions 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi|⇡, µ,⌃) =

Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Complete data labeled 
by true cluster assignments 
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)
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n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 
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p(xi|zi,⇡, µ,⌃) =
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Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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rik = p(zi = k|xi
,⇡, µ,⌃) =

26 

Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 
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n  Estimate a density based on x1,…,xN 

Summary of GMM Concept 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 

Complete data labeled 
by true cluster assignments 
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p(xi|⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi|µzi
,⌃zi)

Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1
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x

i

Gaussian mixture marginal and conditional likelihood : 

p(xi|zi, µ,⌃) = N (xi|µzi
,⌃zi)

p(xi|⇡, µ,⌃) =
KX

zi=1

⇡zi
p(xi|zi, µ,⌃)


