

Information-theoretic interpretation of maximum likelihood 1

Given structure, log likelihood of data:

$$P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) \stackrel{\text{iid}}{=} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(i)})$$

$$= \log \prod_{j \in I} P(x_{i,j}^{(j)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,j}^{(i)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,g}^{(j)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,g}^{(j)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,g}^{(j)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

$$= \sum_{j \in I} \sum_{i \in I} \log P(x_{i,g}^{(j)} \mid P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}) P_{\alpha_{X_{i},f}} = \alpha_{i,g}^{(j)}$$

Information-theoretic interpretation of maximum likelihood
$$3 \pm (AB)$$

Given structure, log likelihood of data:
$$\log P(D \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{x_i, Pa_{x_i, \mathcal{G}}} P(x_i, Pa_{x_i, \mathcal{G}}) \log P(x_i \mid Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) \log P(x_i \mid Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) \log P(x_i \mid Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}})$$

$$= \sum_{i \geq 1} P(x_i, Pa_{x_i, \mathcal{G}}) = \sum_{i \geq 1} P(x_i$$

Scoring a tree 2: similar trees
$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \operatorname{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

$$\int_{\mathcal{B}} \operatorname{Score} \left\{ \int_{\mathcal{A}, \mathcal{B}} \operatorname{I}(A_{i}, \mathcal{B}) + \int_{\mathcal{A}, \mathcal{C}} (A_{i}, \mathcal{C}) \right\}$$

$$\int_{\mathcal{C}} \operatorname{Score} \left\{ \int_{\mathcal{C}} \operatorname{I}(X_{i}, \mathcal{A}_{i}, \mathcal{C}) - m \sum_{i} \widehat{H}(X_{i}) \right\}$$

$$\int_{\mathcal{C}} \operatorname{I}(A_{i}, \mathcal{B}) + \int_{\mathcal{C}} (A_{i}, \mathcal{C})$$

$$\int_{\mathcal{C}} \operatorname{I}(A_{i}, \mathcal{B}) + \int_{\mathcal{C}} (A_{i}, \mathcal{C})$$

$$\int_{\mathcal{C}} \operatorname{I}(X_{i}, \mathcal{A}_{i}) = \int_{\mathcal{C}} \operatorname{Ind} \operatorname{Score} \left\{ \int_{\mathcal{C}} \operatorname{Ind} \left\{ \int_{\mathcal{C}}$$

Chow-Liu tree learning algorithm 2

- $\bigcap \operatorname{Og} \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \operatorname{Pa}_{X_{i}, \mathcal{G}}) m \sum_{i} \widehat{H}(X_{i})$
- Optimal tree BN
 - □ Compute maximum weight spanning tree
 - □ Directions in BN: pick any node as root, breadth-firstsearch defines directions

©Carlos Guestrin 2005-2013

13

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d>1

to d >1

- Most structure learning approaches use heuristics
 - $\hfill \square$ (Quickly) Describe the two simplest heuristic

©Carlos Guestrin 2005-2013

What you need to know about learning BN structures

- Decomposable scores
 - □ Maximum likelihood
 - □ Information theoretic interpretation
- Best tree (Chow-Liu)
- Beyond tree-like models is NP-hard
- Use heuristics, such as:
 - Local search
 - □ LASSO

©Carlos Guestrin 2005-2013

What now...

- We have explored many ways of learning from data
- But...
 - ☐ How good is our classifier, really?
 - ☐ How much data do I need to make it "good enough"?

©Carlos Guestrin 2005-2013

19

A simple setting...

- Classification
 - □ N data points ***
 - ☐ **Finite** number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
 - □ Gets zero error in training error_{train}(h) = 0
- What is the probability that h has more than ε true error?

 \square error_{true} $(h) \ge \varepsilon$

For some

870

©Carlos Guestrin 2005-2013

How likely is a bad hypothesis to get *N* data points right?

- Hypothesis h that is consistent with training data → got N i.i.d. points right
 - □ h "bad" if it gets all this data right, but has high true error
- Prob. h with error_{true}(h) $\geq \varepsilon$ gets one data point right

■ Prob. h with error_{true}(h) $\geq \varepsilon$ gets N data points right

©Carlos Guestrin 2005-201

21

But there are many possible hypothesis that are consistent with training data

©Carlos Guestrin 2005-2013

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets N data points right
- There are *k* hypothesis consistent with data

©Carlos Guestrin 2005-201

23

Union bound

■ P(A or B or C or D or ...) $\leq P(A) + P(B) + P(C) + P(D) - \cdots$

©Carlos Guestrin 2005-2013

..

How likely is learner to pick a bad hypothesis

- Prob. a particular h with error_{true}(h) ≥ ε gets N data points right (1-8)"
- There are k hypothesis consistent with data

There are k hypothesis consistent with data

How likely is it that learner will pick a bad one out of these
$$k$$
 choices?

$$P(3h \; consistent \; with learner will pick a bad one out of these k choices?

$$P(3h \; consistent \; with data \\
= |H| \; (1-\xi)^{N} \quad |K| \leq |H| \quad |$$$$

Generalization error in finite hypothesis spaces [Haussler '88]

■ *Theorem*: Hypothesis space *H* finite, dataset *D* with N i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis *h* that is consistent on the training data:

$$P(error_{true}(h) \geq \epsilon) \leq |H|e^{-N\epsilon}$$

$$|-\xi| \leq e^{-\varepsilon}$$

$$|-\xi| \leq e^{-\varepsilon}$$

$$|-\xi| \leq e^{-\varepsilon}$$