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What about prior  

n  Billionaire says: Wait, I know that the thumbtack is 
“close” to 50-50. What can you do for me now? 

n  You say: I can learn it the Bayesian way… 

n  Rather than estimating a single θ, we obtain a 
distribution over possible values of θ	
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Bayesian Learning 

n  Use Bayes rule: 

n  Or equivalently: 
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Bayesian Learning for Thumbtack 

n  Likelihood function is simply Binomial: 

n  What about prior? 
¨ Represent expert knowledge 
¨ Simple posterior form 

n  Conjugate priors: 
¨ Closed-form representation of posterior 
¨ For Binomial, conjugate prior is Beta distribution 
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Beta prior distribution – P(θ) 

n  Likelihood function: 
n  Posterior: 

Mean: 
 
Mode:  

Beta(2,3) Beta(20,30) 
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Posterior distribution 

n  Prior: 
n  Data: αH heads and αT tails 

n  Posterior distribution:  

Beta(2,3) Beta(20,30) 
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Using Bayesian posterior 

n  Posterior distribution:  

n  Bayesian inference: 
¨ No longer single parameter: 

¨  Integral is often hard to compute 
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MAP: Maximum a posteriori 
approximation 

n  As more data is observed, Beta is more certain 

n  MAP: use most likely parameter: 
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MAP for Beta distribution 

n  MAP: use most likely parameter: 

n  Beta prior equivalent to extra thumbtack flips 
n  As N → 1, prior is “forgotten” 
n  But, for small sample size, prior is important! 
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Prediction of continuous variables 

n  Billionaire sayz: Wait, that’s not what I meant!      
n  You sayz: Chill out, dude. 
n  He sayz: I want to predict a continuous variable 

for continuous inputs: I want to predict salaries 
from GPA. 

n  You sayz: I can regress that…  
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The regression problem 
n  Instances: <xj, tj> 
n  Learn: Mapping from x to t(x) 
n  Hypothesis space: 

¨  Given, basis functions 
¨  Find coeffs w={w1,…,wk} 

¨  Why is this called linear regression??? 
n  model is linear in the parameters 

n  Precisely, minimize the residual squared error: 
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The regression problem in matrix notation 

N
 data points 

K basis functions 

N
 data points 

observations weights 

K basis func
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Minimizing the Residual 
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Regression solution = simple matrix operations 

where 

k×k matrix  
for k basis functions  

k×1 vector 
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n  Billionaire (again) says: Why sum squared error??? 
n  You say: Gaussians, Dr. Gateson, Gaussians… 

n  Model: prediction is linear function plus Gaussian noise 
¨  t(x) = ∑i wi hi(x) + εx	



n  Learn w using MLE 

But, why? 
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Maximizing log-likelihood 

Maximize: 

Least-squares Linear Regression is MLE for Gaussians!!! 
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Announcements   

n  Go to recitation!! J 
¨ Tuesday, 5:30pm in LOW 101 

n  First homework will go out today 
¨ Due on October 14 
¨ Start early!! 
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Bias-Variance tradeoff – Intuition  

n  Model too “simple” è does not fit the data well 
¨ A biased solution 

n  Model too complex è small changes to the 
data, solution changes a lot 
¨ A high-variance solution 
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(Squared) Bias of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Expected hypothesis: ED[hD(x)] 

n  Bias: difference between what you expect to learn and truth 
¨  Measures how well you expect to represent true solution 
¨  Decreases with more complex model  
¨  Bias2 at one point x: 
¨  Average Bias2: 
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Variance of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Variance: difference between what you expect to learn and 
what you learn from a particular dataset  
¨  Measures how sensitive learner is to specific dataset 
¨  Decreases with simpler model 
¨  Variance at one point x: 
¨  Average variance: 
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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Bias-Variance Decomposition of Error 

n  Expected mean squared error: 

n  To simplify derivation, drop x:  

n  Expanding the square: 
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Moral of the Story: 
Bias-Variance Tradeoff Key in ML 

n  Error can be decomposed: 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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What you need to know 

n  Regression 
¨ Basis function = features 
¨ Optimizing sum squared error 
¨ Relationship between regression and Gaussians 

n  Bias-variance trade-off 
n  Play with Applet 
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