

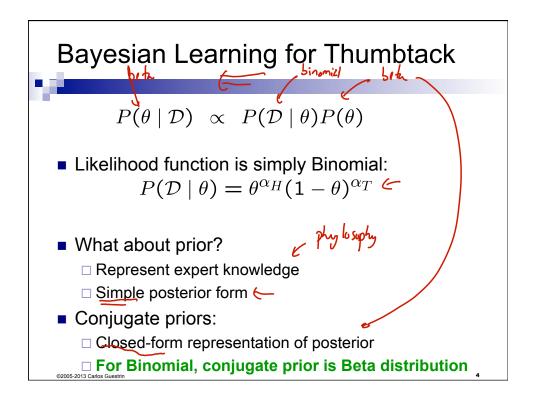
Bayesian Learning
$$0:[3H,2T]$$

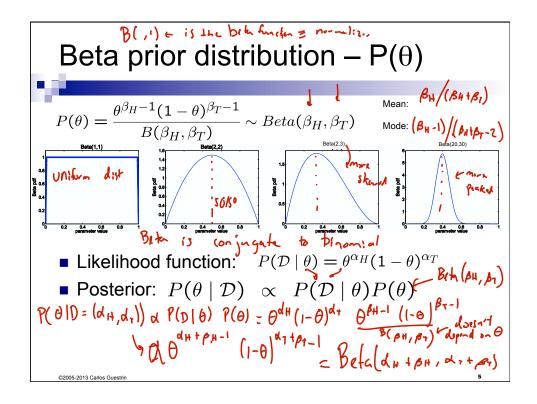
• Use Bayes rule:
$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$
• Or equivalently:
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

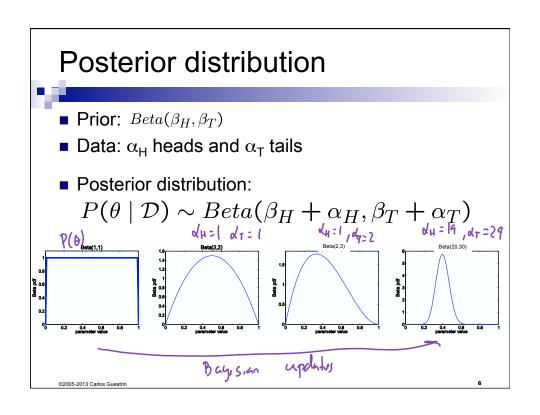
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

MLE:
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

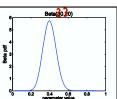
$$P(\theta \mid \mathcal{D}) \propto P(\theta \mid \mathcal{D})$$







Using Bayesian posterior



Posterior distribution:

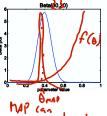
$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Bayesian inference:

Bayesian inference: Inlegal (as be hard to compute the compute
$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

□ Integral is often hard to compute

MAP: Maximum a posteriori approximation



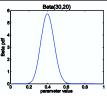
$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

Pressible f:

$$f(\theta) = \theta$$
 = $f(\theta) = f(\theta) = \text{men } \theta$
 $f(\theta) = \text{figure three early } = \theta$



$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta H} + \alpha_H - 1(1-\theta)^{\beta T} + \alpha_T}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$= \text{MAP: use most likely parameter:}$$

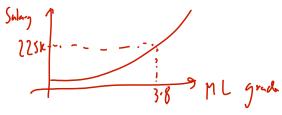
$$\widehat{\theta}_{\text{MF}} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\beta_H + \alpha_H - 1}{\beta_H + \alpha_H + \beta_T + \alpha_T}$$

$$\widehat{\theta}_{\text{NLE}} = \alpha_H / (\alpha_H + \alpha_T)$$

- Beta prior equivalent to extra thumbtack flips
- As N → 3, prior is "forgotten" KH, K+ Coming & PH, B+
- But, for small sample size, prior is important!

Prediction of continuous variables

- Billionaire sayz: Wait, that's not what I meant!
- You sayz: Chill out, dude.
- He sayz: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You sayz: I can regress that...



©2005-2013 Carlos Guestri

44

The regression problem (3.1, 125k)

- Instances: <x_i, t_i>
- $o_{t(\mathbf{x})}$ $f(\mathbf{x}) \rightarrow f(\mathbf{x})$
- **Learn:** Mapping from x to t(x)
- Hypothesis space: $H = \{h_1, \dots, h_K\}$ Given, basis functions
 - Given, basis functions $\mathbf{w} = \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ $\underbrace{t(\mathbf{x})}_{\text{1}} \approx \widehat{f}(\mathbf{x}) = \sum_i w_i h_i(\mathbf{x})$
 - □ Why is this called linear regression???
 - model is linear in the parameters

Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j=1}^{p} \left(t(\mathbf{x}_j) - \sum_{i=1}^{p} w_i h_i(\mathbf{x}_j) \right)^{2k}$$
 Squand

The regression problem in matrix notation
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\mathbf{H}\mathbf{w} - \mathbf{t} \right)^T (\mathbf{H}\mathbf{w} - \mathbf{t})$$

$$\operatorname{residual} \text{residual}$$

$$\mathbf{w}^* = \lim_{h_1 \dots h_K} \left(\mathbf{w}^* \right)^{\frac{K}{2}}$$

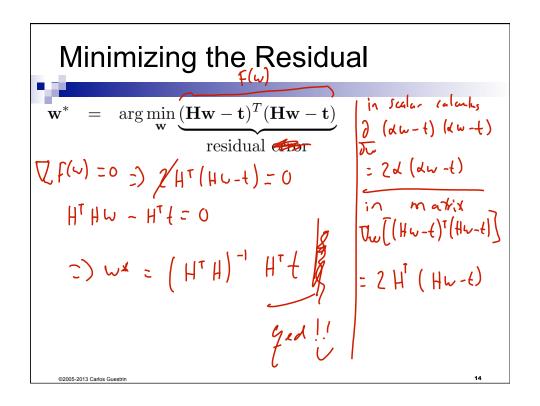
$$\operatorname{residual} \text{residual}$$

$$\operatorname{residual} \text{residual}$$

$$\operatorname{weights}$$

$$\operatorname{observations}$$

$$\operatorname{observations}$$



$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = \underbrace{(\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}}_{\mathbf{A}^{-1}} \underbrace{\mathbf{H}^{\mathrm{T}}\mathbf{t}}_{\mathbf{b}} = \mathbf{A}^{-1}\mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{H}^{\mathrm{T}}\mathbf{H} \\ \mathbf{H}^{\mathrm{T}}\mathbf{H} \end{bmatrix}$$
 b = $\mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{H}^{\mathrm{T}}\mathbf{t} \\ \mathbf{H}^{\mathrm{T}}\mathbf{H} \end{bmatrix}$ k×k matrix for k basis functions

But, why? N(MIOL) & Banssian man in variana or

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...

Learn w using MLE
$$P(t\mid \mathbf{x},\mathbf{w},\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left[t-\sum_{i}w_{i}h_{i}(\mathbf{x})\right]^{2}}$$

Maximizing log-likelihood
$$\ln e^{\int h_1} = \sum \ln h_2$$

Maximize:
$$\ln P(D \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

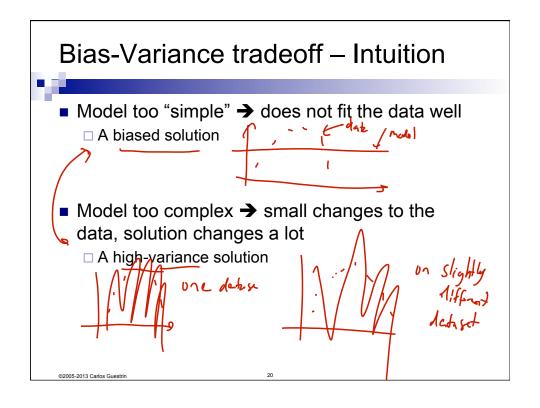
$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}$$

$$= \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{-\left[\frac{h_j}{\sigma} - \sum_i w_i h_i(\mathbf{x}_j$$

Announcements

- - Go to recitation!! ^③
 - □ Tuesday, 5:30pm in LOW 101
 - First homework will go out today
 - □ Due on October 14
 - □ Start early!!

©2005-2013 Carlos Guestr



(Squared) Bias of learner

- If you sample a different dataset D' with N samples, you will learn different h_D'(x)
- Expected hypothesis: E_D[h_D(x)] = hu (x)
- Bias: difference between what you expect to learn and truth
 - □ Measures how well you expect to represent true solution
 - □ Decreases with more complex model
 - \square Bias² at one point x: $\left(\frac{1}{4}\left(\frac{1}{4}\right) \overline{\int_{N}^{2} \left(\frac{1}{4}\right)}\right)$

©2005-2013 Carlos Guestria

21

Var (x1= Ex [(x-M)2]

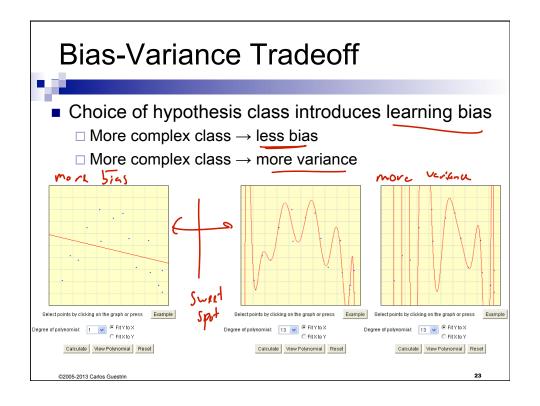
Variance of learner

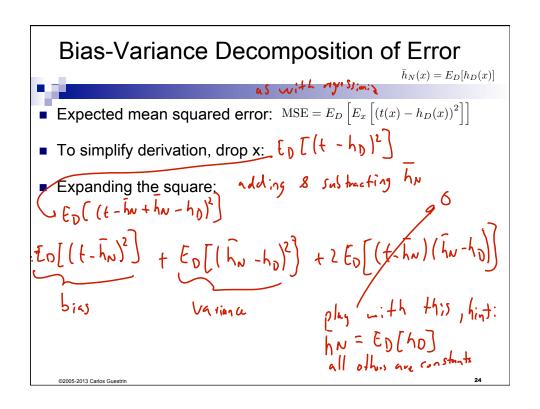
- Given dataset *D* with *N* samples, $\mathcal{D} \rightarrow h_{\mathcal{D}}(x)$ learn function $h_{\mathcal{D}}(x)$
- If you sample a different dataset D' with N samples, you will learn different h_D'(x)
- Variance: difference between what you expect to learn and what you learn from a particular dataset
 - □ Measures how sensitive learner is to specific dataset

 □ Decreases with simpler model (1) to learn to learn
 - □ Variance at one point x: $E_0[(h_0(x) h_N(x))]$
 - □ Average variance:

©2005-2013 Carlos Guestri

2





Moral of the Story: Bias-Variance Tradeoff Key in ML

Error can be decomposed:

$$MSE = E_D \left[E_x \left[(t(x) - h_D(x))^2 \right] \right]$$

$$= E_x \left[\left(t(x) - \bar{h}_N(x) \right)^2 \right] + E_D \left[E_x \left[\left(\bar{h}(x) - h_D(x) \right)^2 \right] \right]$$

- Choice of hypothesis class introduces learning bias
 - \square More complex class \rightarrow less bias
 - \square More complex class \rightarrow more variance

©2005-2013 Carlos Guestria

25

What you need to know

- Regression
 - ☐ Basis function = features
 - □ Optimizing sum squared error
 - □ Relationship between regression and Gaussians
- Bias-variance trade-off
- Play with Applet

©2005-2013 Carlos Guestrin

26