
CSE 546 Machine Learning, Autumn 2013

Homework 4

Due: Monday, December 2, beginning of class

1 Learning Theory [30 points]

Consider a noise-free binary classification problem for which we learn a function that maps binary feature
vectors of length d, x ∈ {0, 1}d, to output values y ∈ {0, 1}. We are given N noise-free, i.i.d. training
examples (x1, y1), . . . , (xN , yN ).

1. [8 points] Suppose our learning method makes no restrictions on the hypothesis space. That is, we
potentially learn any classification function h that satisfies

h : {0, 1}d → {0, 1}

For this case, what is the size of our hypothesis space?
2. [4 points] Using a PAC bound, if we would like to guarantee a generalization error less than ε with

high probability 1− δ, how many samples must we observe?
3. [4 points] Interpret the bound you derived above. Is it useful? Why or why not?
4. [10 points] Now assume the true relationship between x and y can be expressed by a binary decision

tree of depth 2. If we learn a decision tree with depth 2, what is the size of the hypothesis space?
Provide a bound on the number of samples N required to achieve generalization error ε with probability
1 − δ. (Note: you do not need to calculate the size of the hypothesis space exactly. Answers using
Big-Oh notation are acceptable.)

5. [4 points] How does this bound compare to your initial bound? Comment on the structure we assumed
for this problem and its effect on our PAC bounds.

2 PCA via Successive Deflation [35 points]

(Adapted from Murphy Exercise 12.7)

Suppose we have a set of n datapoints x1, . . . , xn, where each xi is represented as a d-dimensional column
vector.

Let X = [x1; . . . ;xn] be the (d× n) matrix where column i is equal to xi. Define C = 1
nXXT to be the

covariance matrix of X, where Cij =
∑

n XinXjn = covar(i, j).
Next, let v1, v2, . . . vk be the first k eigenvectors with larges eigenvalues of C, i.e., the principal basis

vectors. These satisfy

vTj vk =

{
0 if j 6= k

1 if j = k

v1 is the first principal eigenvector of C (the eigenvector with the largest eigenvalue), and as such satisfies
Cv1 = λ1v1. Now define x̃i as the orthogonal projection of xi onto the space orthogonal to v1:

x̃i = (I− v1vT1 )xi
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Finally, define X̃ = [x̃1; . . . ; x̃n] as the deflated matrix of rankd d− 1, which is obtained by removing
from the d-dimensional data the component that lies in the direction of the first principal eigenvector:

X̃ = (I− v1vT1 )X

1. [11 points] Show that the covariance of the deflated matrix, C̃ = 1
nX̃X̃T is given by

C̃ =
1

n
XXT − λ1v1vT1

(Hint: Some useful facts: (I − v1vT1 ) is symmetric, XXT v1 = nλ1v1, and v
T
1 v1 = 1. Also, for any

matrices A and B, (AB)T = BTAT .)
2. [11 points] Show that for j 6= 1, if vj is a principal eigenvector of C with corresponding eigenvalue λj

(that is, Cvj = λjvj), then vj is also a principal eigenvector of C̃ with the same eigenvalue λj .

3. [6 points] Let u be the first principal eigenvector of C̃. Explain why u = v2. (You may assume u is
unit norm.)

4. [7 points] Suppose we have a simple method for finding the leading eigenvector and eigenvalue of a
positive-definite matrix, denoted by [λ, u] = f(C). Write some pseudocode for finding the first K
principal basis vectors of X that only uses the special f function and simple vector arithmetic.
(Hint: This should be a simple iterative routine that takes 2-3 lines to write. The input is C,K, and
the function f , the output should be vj and λj for j ∈ [1 : K].)

3 Programming Question (clustering with K-means) [35 points]

In class we discussed the K-means clustering algorithm. Your programming assignment this week is to
implement the K-means algorithm on digit data.

3.1 The Data

There are two files with the data. The first

digit.txt

contains the 1000 observations of 157 pixels (a subset of the original 785) concerning handwritten digits.
The second file

labels.txt

contains the true digit label (either 1, 3, 5, or 7 ). You can read both data files in with

X = genfromtxt(’digit.txt’)

Y = genfromtxt(’labels.txt’, dtype=int)

Please note that there aren’t IDs for the digits. Please assume the first line is ID 0, the second line is ID
1, and so on. The labels correspond to the digit file, so the first line of labels.txt is the label for the digit in
the first line of digit.txt.

3.2 The algorithm

Your algorithm should be implemented as follows:

1. Select k starting centers that are points from your data set. You should be able to select these centers
randomly or have them given as a parameter.

2. Assign each data point to the cluster associated with the nearest of the k center points.
3. Re-calculate the centers as the mean vector of each cluster from (2).
4. Repeat steps (2) and (3) until convergence or iteration limit.

Define convergence as no change in label assignment from one step to another or you have iterated 20 times
(whichever comes first). Please count your iterations appropriately: after 20 iterations, you should have
re-calculated the centers 20 times.
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3.3 Within group sum of squares

The goal of clustering can be thought of as minimizing the variation within groups and consequently max-
imizing the variation between groups. A good model has low sum of squares within each group. We define
sum of squares in the traditional way. Let Ck be the kth cluster and let µk be the empirical mean of the
observations xi in cluster Ck. Then the within group sum of squares for cluster Ck is defined as:

SS(k) =
∑
i∈Ck

|xi − µCk
|2

Please note that the term |xi − µCk
| is the euclidean distance between xi and µCk

, and therefore should be

calculated as |xi−µCk
| =

√∑d
j=1 (xij − µCkj

)2, where d is the number of dimensions. Please note that that

term is squared in SS(k). If there are K clusters total then the “sum of within group sum of squares” is
just the sum of all K of these individual SS(k) terms. .

3.4 Mistake Rate

Given that we know the actual assignment labels for each data point we can attempt to analyze how well the
clustering recovered this. For cluster Ck let its assignment be whatever the majority vote is for that cluster.
If there is a tie, just choose the digit that is smaller numerically as the majority vote. For example if for
one cluster we had 270 observations labeled one, 50 labeled three, 9 labeled five, and 0 labeled seven then
that cluster will be assigned value one and had 50 + 9 + 0 = 59 mistakes. If we add up the total number
of “mistakes” for each cluster and divide by the total number of observations (1000) we will get our total
mistake rate, between 0 and 1.

3.5 Questions

When you have implemented the algorithm please report the following:

1. [10pts] The values of sum of within group sum of squares and mistake rates for k = 2, k = 4 and k = 6.
Please start your centers with the first k points in the dataset. So, if k = 2, your initial centroids will
be ID 0 and ID 1, which correspond to the first two lines in the file.

2. [5pts] The number of iterations that k-means ran for k = 6, starting the centers as in the previous
item. Make sure you count the iterations correctly. If you start with iteration i = 0 and at i = 3 the
the cluster assignments don’t change, the number of iterations was 4, as you had to do steps 2 and 3
to figure this out.

3. [10pts] A plot of the sum of within group sum of squares versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Please
start your centers randomly (choose k points from the dataset at random).

4. [10pts] A plot of total mistake rate versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Please start your centers
randomly (choose k points from the dataset at random).

For the last two items, you should generate these graphs about 3 times, just to make sure you don’t
submit a plot where k-means got really unlucky centers in the beginning. Only submit one plot though.
Also remember to submit your code.

3.6 Some useful functions

You should take a look at the “euclidean” function in “scipy.spatial.distance”. You should also take a look
at smart way of indexing, such as the “fancy stuff” in the python review.
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