
CSE 546 Machine Learning, Autumn 2013

Homework 2

Due: Monday, October 28, beginning of class

1 Boosting [25 Points]

We learned about boosting in lecture and the topic is covered in Murphy 16.4. On page 555
Murphy claims that “it was proved that one could boost the performance (on the training
set) of any weak learner arbitrarily high, provided the weak learned could always perform
slightly better than chance.” We will now verify this in the AdaBoost framework.

1. (7 points) Given a set of N observations (xj , yj) where yj is the label yj ∈ {−1, 1},
let ht(x) be the weak classifier at step t and let αt be its weight. First we note that
the final classifier after T steps is defined as:

H(x) = sgn

{
T∑

t=1

αtht(x)

}
= sgn{f(x)}

Where

f(x) =

T∑
t=1

αtht(x)

Show that:

εTraining =
1

N

N∑
j=1

1{H(xj)6=yj} ≤
1

N

N∑
j=1

exp(−f(xj)yj)

Where 1{H(xj)6=yj} is 1 if H(xj) 6= yj and 0 otherwise.

2. (7 points) The weight for each data point j at step t+ 1 can be defined recursively by:

w
(t+1)
j =

w
(t)
i exp(−αty

jht(x
j))

Zt

Where Zt is a normalizing constant ensuring the weights sum to 1:

Zt =

N∑
j=1

wt
j exp(−αty

jht(x
j))

1

Show that:

1

N

N∑
j=1

exp(−f(xj)yj) =

T∏
t=1

Zt

3. (11 points) We showed above that training error is bounded above by
∏T

t=1 Zt. At
step t the values Z1, Z2, . . . , Zt−1 are already fixed therefore at step t we can choose
αt to minimize Zt. Let

εt =

m∑
j=1

wt
j1{ht(xj)6=yj}

be the weighted training error for weak classifier ht(x) then we can re-write the formula
for Zt as:

Zt = (1− εt) exp(−αt) + εt exp(αt)

(a) First find the value of αt that minimizes Zt then show that

Zopt
t = 2

√
εt(1− εt)

(b) Assume we choose Zt this way. Then re-write εt = 1
2 − γt where γt > 0 implies

better than random and γt < 0 implies worse than random. Then show that:

Zt ≤ exp(−2γ2t)

You may want to use the fact that log(1− x) ≤ −x for 0 ≤ x < 1

Thus we have:

εtraining ≤
T∏

t=1

Zt ≤ exp(−2

T∑
t=1

γ2t)

(c) Finally, show that if each classifier is better than random (e.g. γt ≥ γ for all t
and γ > 0) that:

εtraining ≤ exp(−2Tγ2)

Which shows that the training error can be made arbitrarily small with enough steps.

2 KNN [15 Points]

Consider the following 2D dataset: positive examples at (2,2), (2,4), (2,6), (2,8), and (4,5);
negative examples at (4,3), (4,7), (6,4), (6,6), and (8,5).

1. (3 points) Draw a Voronoi diagram of this dataset using Euclidian distance.

2. (2 points) List the examples that could be removed without changing the frontiers
produced by 1NN.

3. (5 points) Compute the error rate of 3NN using LOOCV. That is, for each point,
remove it, and predict its class using the other examples. If some example has more
than 3 examples at the same nearest distance such that different choices of the nearest
neighbors give different predictions, then count the example as an error. This computes
the worst-case error rate.

2

4. (5 points) One greedy algorithm for feature selection is called backward elimination.
A learning algorithm is applied using a full set of D features, and its error rate is
recorded. One by one for each feature, the algorithm is applied with (only) that
feature excluded. This gives D new runs of the algorithm, each with an error rate.
The feature whose exclusion produced the lowest error rate is permanently excluded,
and the process is iterated. Backward elimination terminates when there is no feature
whose exclusion leads to a lower error rate, or when the number of features reaches a
specified level.

Apply 3NN with backward elimination on this dataset with the minimum number of
features being one. Which feature would be eliminated, if any?

3 Decision Trees [15 points]

1. (7 points) Consider the problem of predicting if a person has a college degree based on
age and salary. The table and graph below contain training data for 10 individuals.

Age Salary ($) College Degree
24 40,000 Yes
53 52,000 No
23 25,000 No
25 77,000 Yes
32 48,000 Yes
52 110,000 Yes
22 38,000 Yes
43 44,000 No
52 27,000 No
48 65,000 Yes

20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

x 10 4

Age (years)

Ye
ar

ly
 in

co
m

e
($

)

Yearly Income vs. Age

Has College Degree
No College Degree

3

Build a decision tree for classifying whether a person has a college degree by greedily
choosing threshold splits that maximize information gain. What is the depth of your
tree and the information gain at each split?

2. (4 points) A multivariate decision tree is a generalization of univariate decision trees,
where more than one attribute can be used in the decision rule for each split. That
is, splits need not be orthogonal to a feature’s axis.

For the same data, learn a multivariate decision tree where each decision rule is a
linear classifier that makes decisions based on the sign of αxage + βxincome − 1.

What is the depth of your tree, as well as α, β and the information gain for each split?

3. (4 points) Multivariate decision trees have practical advantages and disadvantages.
List two advantages and two disadvantages multivariate decision trees have compared
to univariate decision trees.

4 Programming Question [45 Points]

In this problem, you will train a logistic regression model to predict the Click Through
Rate (CTR) on a dataset with about 10,000 examples. The CTR provides a measure of the
popularity of an advertisement, and the features we will use for prediction include attributes
of the ad and the user.

4.1 Unprocessed Dataset

The dataset we will consider comes from the 2012 KDD Cup Track 2. Here, a user types a
query and a set of ads are displayed and we observe which ad was clicked.

For example:

1. Alice went to the famous search engine Elgoog, and typed the query “big data”.

2. Besides the search result, Elgoog displayed 3 ads each with some short text including
its title, description, etc.

3. Alice then clicked on the first advertisement

This completes a SESSION. At the end of this session Elgoog logged 3 records:

Clicked = 1 | Depth = 3 | Position = 1 | Alice | Text of Ad1 |
Clicked = 0 | Depth = 3 | Position = 2 | Alice | Text of Ad2 |
Clicked = 0 | Depth = 3 | Position = 3 | Alice | Text of Ad3 |

In addition, the log contains information about Alice’s age and gender. Here is the for-
mat of a complete row of our training data:

Clicked | Depth | Position | Userid | Gender | Age | Text Tokens of Ad

Let’s go through each field in detail:

• “Clicked” is either 0 or 1, indicating whether the ad is clicked.

4

• “Depth” takes a value in {1, 2, ..., } specifying the number of ads displayed in the
session.

• “Position” takes a value in {1, 2, ..., Depth} specifying the rank of the ad among all
the ads displayed in the session.

• “Userid” is an integer id of the user.

• “Age” takes a value in {1, 2, 3, 4, 5, 6}, indicating different ranges of a user’s age: ‘’1’
for (0, 12], ‘2’ for (12, 18], ‘3’ for (18, 24], ‘4’ for (24, 30], ‘5’ for (30, 40], and ‘6’ for
greater than 40.

• “Gender” takes a value in {−1, 1}, where -1 stands for male and 1 stands for female.

• “Text Tokens” is a comma separated list of token ids. For example: “15,251,599”
means “token 15”, “token 251”, and “token 599”. (Note that due to privacy issues, the
mapping from token ids to words is not revealed to us in this dataset, e.g., “token 32”
to “big”.)

Here is an example that illustrates the concept of features “Depth” and “Position”.
Suppose the list below was returned by Elgoog as a response to Alice’s query. The list has
depth = 3. “Big Data” has position = 1, “Machine Learning” has position = 2 and so
forth.

Big Data
Machine Learning
Cloud Computing

Here is a sample from the training data:
0 | 2 | 2 | 280151 | 1 | 2 | 0, 1, 154, 173, 183, 188, 214, 234, 26, 3, 32, 36, 37, 4503, 51, 679, 7740, 8, 94
The test data is in the same format except that each instance does not have the first

label field, which is stored in a separate file named “test label.txt”. Some data points do
not have user information. In these cases, the userid, age, and gender are set to zero.

4.2 Processed Dataset (that you will use...)

In class, we simply denote

xt = [xt1, ..., x
t
d] (1)

as an abstract feature vector. In the real world, however, constructing the feature vector
requires some thought. We have preprocessed the dataset for you, making the following
modifications.

• First of all, not everything in the data should be treated as a feature. In this dataset,
“Userid” should not be treated as feature. We have removed this column from the
dataset for you.

• Similarly, we cannot directly use the list of token ids as features in Equation ??
since the numbers are arbitrarily assigned and thus meaningless for the purposes of
regression. Instead, we should think of the list of token ids L = [l1, l2, l3, ...] as a
compact representation of a sparse binary vector b where b[i] = 1∀i ∈ L. We have
replaced the list of words with a list of binary variables indicating token presence.

5

• As for the rest of the features: “Depth”, “Position”, “Age”, and ‘Gender”, they are
scalar variables, so we maintain their original values in the dataset.

The dataset that we are giving you has the following form:
Clicked, Depth, Position, Gender, Age, Word1, Word2, Word3, Word4, ..., Word50

So a sample training datapoint would be:
0, 1, 2, 1, 12, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

Again, the test data is in the same format except that each instance does not have the
first label field, which is stored in a separate file named “test label.txt”.

4.3 Accessing and Processing the Data

1. Download the processed version of the dataset “clickprediction data.tar.gz” from the
course website.

2. After extracting, there should be five files: train.txt, test.txt test label.txt, start.py
(which contains code to load the data) and oversampled train.txt (more on this file
later. for now, just ignore it). I already added a column of ones in the starter code,
so if you don’t want to do that you can just remove the add ones function.

4.4 Batch Gradient Descent

Recall that logistic regression can be optimized by gradient descent (or ascent). I’m calling
it batch gradient descent because we’re using the whole training data in order to update the
weights in every iteration, in contrast to stochastic gradient descent. The log loss function
you should use is the following:

−((

N∑
j=1

yj(w0 +
∑

wix
j
i)− ln(1 + ew0+

∑
wix

j
i))/N − λ

2
||w||22) (2)

1. Write down the equation for the weight update step. That is, how to update weights
wt+1 using (X,Y,wt). Assume we’re doing L2 regularization.

2. Implement gradient descent and run it for 1000 iterations, with different stepsizes η
and λ parameters. Initialize w with a vector of zeroes. Remember not to regularize
w0!

(a) Plot the log-loss function after each iteration (no need to plot it for iteration 0),
using η = 0.1 and λ = 0.3. Remember to include the regularization term.

(b) Use the weights you found to predict the CTRs for the test data. Recall that
“test label.txt” contains the labels for the test data. Report the SSE (sum of
squared errors) of your predicted CTR. Make sure to use the SSE for the 0/1
prediction (meaning that your prediction should be either 0 or 1, and not proba-
bility value. Make prediction be 1 if the probability if class 1 is greater than 0.5).
Report the SSE for the same parameters you used in the previous question.

6

3. Now implement the following stop criteria: stop when |l(wt) − l(wt−1)| < ε, where l
is the log-loss function. Run gradient descent with η = 0.1, λ = 0.3 and ε = 0.0005.

(a) For how many iterations did gradient descent run?

(b) Plot the log-loss function after each iteration for these iterations (now the x axis
should not go until 1000 as it did in the previous question).

(c) Use the weights you found to predict the CTRs for the test data. Report the
SSE (sum of squared errors) of your predicted CTR.

4.5 Stochastic Gradient Descent

Recall that stochastic gradient descent (SGD) performs a gradient descent using a noisy
estimate of the full gradient based on just the current example.

1. Write down the equation for the weight update step. That is, how to update weights
wt+1 using the data point (xj , yj) and wt, where xj = [xj1, x

j
2, ..., x

j
d] is the feature

vector for example j, and yj ∈ {0, 1} is the label. Once again, use L2 regularization.

2. implement SGD and train the weights by making one pass over the dataset. You may
assume that the data is randomly ordered, so don’t reorder it. Use η = 0.1.

(a) Report the l2 norm of the weights at the end of the pass with λ = 0 (no regu-
larization). Note that if your l2 norm is not small and keeps growing as you get
more and more data, you may be using a λ too small. Report the same norm
for λ = 0.3. Please do not include w0 when calculating the l2 norm, as it is not
regularized.

(b) Use the weights you found with λ = 0.3 to predict the CTRs for the test data
and report the SSE.

(c) Report the weight for the following features: intercept (w0), depth and position.
Use λ = 0.3.

3. Now run SGD for 5 passes over the data, with η = 0.1 and λ = 0.3. Report the value
of the log-loss function on the training data, after the 5 passes. Run batch gradient
descent for 5 iterations (the computing cost will be in the same ballpark) and the same
parameters, and report the value of the log-loss function. Which algorithm seems to
converge faster?

4.6 Class Imbalance

Now take a look at your predictions on the test data, for either SGD or batch gradient
descent. More specifically, take a look at how many times your algorithm predicted a 1.
Due to class imbalance, SSE is not an adequate measure of quality here. There is a hidden
lesson here: you should never trust an evaluation metric blindly, without thinking about
what it means and even looking at some predictions or at the model. We will now use two
class-specific metrics: precision and recall, defined as follows.

Given a class c, lets say that there are two groups: A, the group of instances that are
in class c, and B, the group of instances that your algorithm classified as being in class c.

Precision is defined as |A∩B||B| , and recall is defined as |A∩B||A| . If an algorithm doesn’t classify

any instances on class c, let’s define the precision as 0.

7

1. Calculate precision and recall for classes 0 and 1 on the test set, for the predictions
made by SGD running with one pass over the data, λ = 0.3 and η = 0.1.

2. A very simple (and not the best!) solution to the problem of class imbalance is to over-
sample from the class that has fewer instances until the imbalance has been corrected.
This introduces other biases into the dataset, as the instances of that class will be re-
peated over and over again. The file with a new training set with more balanced data
(where I oversampled the positive examples) is “training oversampled.txt”. Now run
the batch gradient descent with 10000 iterations, η = 0.01, λ = 0.3) on this training
set and report the precision/recall values for classes 0 and 1 for the test data.

8

