CSE546: SVMs, Dual Formulation, and Kernels Winter 2012

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

Linear classifiers – Which line is better?

Pick the one with the largest margin!

Margin: measures height of w.x+b plane at each point, increases with distance

$$\gamma_j = (w.x_j + b)y_j$$

Max Margin: two equivalent forms

(1)
$$\max_{w,b} \min_{j} \gamma_{j}$$

(2)
$$\max_{\gamma,w,b} \gamma \\ \forall j \ (w.x_j + b)y_j > \gamma$$

How many possible solutions?

$$\max_{\gamma,w,b} \gamma$$

$$\forall j \ (w.x_j + b)y_j > \gamma$$

Any other ways of writing the same dividing line?

- $\mathbf{w.x} + \mathbf{b} = 0$
- 2w.x + 2b = 0
- 1000w.x + 1000b = 0
-
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max $_{v,w,b}$?

Review: Normal to a plane

Idea: constrained margin

$$\mathbf{x}_j = \bar{\mathbf{x}}_j + \lambda \frac{\mathbf{w}}{||\mathbf{w}||}$$

Final result: can maximize constrained margin by minimizing ||w||₂!!!

Max margin using canonical hyperplanes

Support vector machines (SVMs)

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} \\
(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
 - More on this later

Non-support Vectors:

- everything else
- moving them will not change w

Support Vectors:

 data points on the canonical lines

What if the data is not linearly separable?

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle$$
 — m features

$$y_i \in \{-1, +1\}$$
 — class

Add More Features!!!

$$\phi(x) = \begin{bmatrix} \vdots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \vdots \\ x^{(1)} \end{bmatrix}$$

What about overfitting?

What if the data is still not linearly separable?

$$\min_{\mathbf{w},b} \mathbf{w} \cdot \mathbf{w} + \mathsf{c} \text{ \#(mistakes)}$$
 $\left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j \geq 1 \qquad , \forall j$

- First Idea: Jointly minimize w.w and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C on development / cross validation
- Tradeoff #(mistakes) and w.w
 - 0/1 loss
 - Slack penalty C
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes

Slack variables – Hinge loss

Select on dev. set, etc.

For each data point:

- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty

Side Note: Different Losses

All approximations of 0/1 loss!

What about multiple classes?

One against All

Learn 3 classifiers:

- + vs {0,-}, weights w₊
- vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀
 Output for x:

```
Any problems?

Could we learn this →

dataset?
```

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new constraints

For j possible classes:

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

Learn 1 classifier: Multiclass SVM

Introduce slack variables, as before:

minimize_{w,b}
$$\sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_{j}$$
 $\mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_{j} + b^{(y')} + 1 - \xi_{j}, \ \forall y' \neq y_{j}, \ \forall j \in \mathbb{N}$ $\xi_{j} \geq 0, \ \forall j$

Now, can we learn it?

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - -0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs

Whats Next!

- Learn one of the most interesting and exciting recent advancements in machine learning
 - The "kernel trick"
 - High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Constrained optimization

 $\min_x x^2$ s.t. $x \ge b$

How do we solve with constraints?

→ Lagrange Multipliers!!!

Lagrange multipliers – Dual variables

min
$$_x$$
 x^2 Add Lagrange multiplier S.t. $x \geq b$ Rewrite Constraint Introduce Lagrangian (objective): $L(x,\alpha) = x^2 - \alpha(x-b)$

Why does this work at all???

- min is fighting max!
- $x < b \rightarrow (x-b) < 0 \rightarrow max_{\alpha} \alpha(x-b) = \infty$ S.t. $\alpha \ge 0$
 - min won't let that happen!!
- x>b, $\alpha>0 \rightarrow (x-b)>0 \rightarrow \max_{\alpha} -\alpha(x-b) = 0$, $\alpha^*=0$
 - min is cool with 0, and $L(x, \alpha)=x^2$ (original objective)
- $x=b \rightarrow \alpha$ can be anything, and $L(x, \alpha)=x^2$ (original objective)
- Since min is on the outside, can force max to behave and constraints will be satisfied!!!

We will solve:

$$\min_x \max_{\alpha} L(x, \alpha)$$

s.t.
$$\alpha \geq 0$$

Add new constraint

Dual SVM derivation (1) – the linearly separable case

Original optimization problem:

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j \\ \text{Rewrite} & \text{One Lagrange multiplier} \\ \text{constraints} & \text{per example} \end{array}$$

Lagrangian:

$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

Dual SVM derivation (2) – the linearly separable case

$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

Can solve for optimal w,b as function of α:

$$\frac{\partial L}{\partial w} = w - \sum_{j} \alpha_{j} y_{j} x_{j} \quad \Rightarrow \quad \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Also,
$$\alpha_k > 0$$
 implies constraint is tight $\rightarrow b = y_k - \mathbf{w} \cdot \mathbf{x}_k$ for any k where $\alpha_k > 0$

So, in dual formulation we solve for α directly!

w,b are computed from α (if needed)

Dual SVM interpretation: Sparsity

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Final solution tends to be sparse

- $\alpha_j = 0$ for most j
- don't need to store these points to compute w or make predictions

Non-support Vectors:

- $\alpha_i = 0$
- moving them will not change w

Support Vectors:

α_i≥0

Dual SVM formulation – linearly separable

Lagrangian:

$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

Substituting (and some advanced math we are skipping) produces

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $lpha_k > 0$

Dual SVM:

Notes:

- max instead of min.
- One a for each training example

$$\begin{array}{ll} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ \text{c instead} & \sum_{i} \alpha_{i} y_{i} = \emptyset \\ \text{e a for} & \alpha_{i} \geq 0 \\ \text{h training} & \text{scalars} \end{array}$$

Sums over all training examples

Dual for the non-separable case – same basic story (we will skip details)

Primal:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

Solve for w,b,a:

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $C > lpha_k > 0$

Dual:

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$
$$\sum_{i} \alpha_{i} y_{i} = \mathbf{0}$$

$$C > \alpha_{i} > \mathbf{0}$$

What changed?

- Added upper bound of C on α_i!
- Intuitive explanation:
 - Without slack. $\alpha_i \rightarrow \infty$ when constraints are violated (points misclassified)
 - Upper bound of C limits the α_i, so misclassifications are allowed

Wait a minute: why did we learn about the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal
 - At least for small datasets
- But, more importantly, the "kernel trick"!!!
 - Another little detour...

Reminder: What if the data is not linearly separable?

Use features of features of features of features....

$$\phi(x) = \begin{pmatrix} x^{(1)} \\ \dots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \dots \\ e^{x^{(1)}} \end{pmatrix}$$

Feature space can get really large really quickly!

Higher order polynomials

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$

number of input dimensions

m – input featuresd – degree of polynomial

grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C > \alpha_{i} > 0$

First, we introduce features:

$$\mathbf{x}_i \mathbf{x}_j \rightarrow \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i)$$

Remember the examples x only appear in one dot product

Next, replace the dot product with a Kernel:

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

Why is this useful???

Efficient dot-product of polynomials

Polynomials of degree exactly d

$$d=1$$

$$\phi(u).\phi(v) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1v_1 + u_2v_2 = u.v$$

$$d=2$$

$$\phi(u).\phi(v) = \begin{pmatrix} u_1^2 \\ u_1u_2 \\ u_2u_1 \\ u_2^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1v_2 \\ v_2v_1 \\ v_2^2 \end{pmatrix} = u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2$$

$$= (u_1v_1 + u_2v_2)^2$$

$$= (u.v)^2$$

For any *d* (we will skip proof):

$$\phi(u).\phi(v) = (u.v)^d$$

 Cool! Taking a dot product and exponentiating gives same results as mapping into high dimensional space and then taking dot produce

Finally: the "kernel trick"!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never compute features explicitly!!!
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- But, O(n²) time in size of dataset to compute objective
 - Naïve implements slow
 - much work on speeding up

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$
 $b = y_{k} - \mathbf{w}.\Phi(\mathbf{x}_{k})$ for any k where $C > \alpha_{k} > 0$

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

And many others: very active area of research!

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting
 - But everything overfits sometimes!!!
 - Can control by:
 - Setting C
 - Choosing a better Kernel
 - Varying parameters of the Kernel (width of Gaussian, etc.)

What about at classification time

- For a new input \mathbf{x} , if we need to build $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $sign(\mathbf{w}.\Phi(\mathbf{x})+b)$
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

Just need to store the support vectors and alphas

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to get support vectors and $\alpha_{\rm i}$
- At classification time: if we need to build $\Phi(\mathbf{x})$, we are in trouble!
 - instead compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) \\ b &= y_{k} - \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{k}, \mathbf{x}_{i}) \\ \text{for any } k \text{ where } C > \alpha_{k} > 0 \end{aligned} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

Only need to store support vectors and $\alpha_i!!!$

Reminder: Kernel regression

Instance-based learning:

- A distance metric
 Euclidian (and many more)
- How many nearby neighbors to look at?All of them

A weighting function
 w_i = exp(-D(x_i, query)² / K_w²)

Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

predict =
$$\sum w_i y_i / \sum w_i$$

SVMs v. Kernel Regression

SVMs

$$sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$
or
 $sign\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

SVMs:

- Learn weights α_i (and bandwidth)
- Often sparse solution

KR:

- Fixed "weights", learn bandwidth
- Solution may not be sparse
- Much simpler to implement

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function	Hinge Loss	Log Loss
High dimensional features with kernels	Yes!!!	Actually, yes!

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of data points:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

- Derive simple gradient descent rule on α_i , b
- Similar tricks for all linear models: Perceptron, etc

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
Kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of learned model	Linear model from "Margin"	Probability Distribution

What you need to know

- Dual SVM formulation
 - How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- SVMs vs kernel regression
- SVMs vs logistic regression