CSE546: SVMs, Dual Formulation,
and Kernels
Winter 2012

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

Linear classifiers — Which line is better?

wW. = Ej wi) x()
+ |
alx = Data
" _ _ <x§1),.. ,mgm),y1>
+ -
. = <$7(7Jl)7 * 7$7(7Jm)7 yn>
+

o'y = - Example i
<a:(1), L 7$Z(m)> — m features

1

y; € {—1,4+1} — class

Pick the one with the largest margin!

S o
o
A A I
¥o) Q Q
+ ; +
2 2 2
.:H:.
.:I']:.

o o
v v
O v
+ Q
X +
FS X
S

Margin: measures
height of w.x+b plane at
each point, increases
with distance

v; = (w.z; +b)y;

Max Margin: two equivalent

forms

(1) maX rT}In ’yj

(2) MaXy w.b 7Y
Vi (w.xj+b)y; >~

How many possible solutions?

MaXy w,b Y
\V/j (w.mj + b)yj >y

Any other ways of writing the
= same dividing line?

e WwX+b=0

e 2w.Xx+2b=0

e 1000w.x + 1000b =0

* Any constant scaling has the
same intersection with z=0
plane, so same dividing line!

Do we really want to max , ,, ,?

Review: Normal to a plane

W

Xj: 7 A

W]

Key Terms

X4 -- projection of x; onto w
m W

||w|| -- unit vector normal to w

ldea: constrained margin x; =X; + A

W]
by Generally: w0
: +
Q r=x +2v——
; o]
2 Assume: x* on positive line, x-
= on negative
= waxt +b=1
afs =
w. <:z;_+2v v >+b—1
[|w]]
+ — w. W
X w.x +b4+2v——m =1
- [|w]]
T 4 _ ww
Ml =7 | 2 Tl _ 2
waw Jwaw

Final result: can maximize constrained margin by minimizing ||w||,!!!

Max margin using canonical hyperplanes

maximize, wp 7
(w.x; +b)y; >, Vj € Dataset

~
+
]

QO

+
X
=

S

minimizey;, w.w
- (w.xj + b) y; > 1, Vj € Dataset

The assumption of canonical
hyperplanes (at +1 and -1) changes
the objective and the constraints!

Support vector machines (SVMs)
minimizey , wW.w

(W.Xj —+ b) y; > 1, Vg

4 Solve efficiently by quadratic
¥ programming (QP)
PR 4k — Well-studied solution algorithms
— Not simple gradient ascent, but close
+ Hyperplane defined by support
=+ vectors
— Could use them as a lower-dimension
basis to write down line, although we
argin 2Y haven’t see.n how yet
— More on this later
Non-support Vectors:
. everything else Support Vectors:
« moving them will data points on the
not change w canonical lines

What if the data is not linearly separable?
<x,§1) %(m)> — m features

y; € {—1,4+1} — class

Add More Features!!!
= [a®
()
- (1) ()

@) =1 _(1),.06)

What about overfitting? a0

What if the data is still not linearly separable?

minimizew,b W.W + C #(mistakes)
(W.Xj b) Y; > 1 ,\V/j

+ = e First Idea: Jointly minimize w.w
+ - . and number of training mistakes

T = - — How to tradeoff two criteria?
= — Pick Con development / cross validation

+ o, T 7 * Tradeoff #(mistakes) and w.w
= = — 0/1 loss
+ — Slack penalty C
— Not QP anymore

— Also doesn’t distinguish near misses and
really bad mistakes

Slack variables — Hinge loss

miniMmizey , W.W+CZ g
(W.Xj -+ b) Y > 1] - ﬁj , V9 &0

= Slack Penalty C > 0:
= e (C=ow =2 have to separate the data!

(=0 - ignore data entirely!
* Select on dev. set, etc.

For each data point:

 [fmargin>1, don’t care

* If margin < 1, pay linear penalty

Side Note: Different Losses
Logistic regression: Boosting :
> In(1 + exp(—y;f(x:))) %ZQXD(_C%JB(%)) =] %
i=1 i i

SVM:
minimizey ;, w.w+C3;¢;
(W.Xj -+ b) y;j =2 1—=§&;, Vj

§ >0, vy
Hinge loss:

&= (1 — flx)yi)+

0-1 Loss:
S(H(z) % 9=

| IS S T S 1 "
-1.0 -0.5 1.0 1.5 2.0

vif (z)
All approximations of 0/1 loss!

What about multiple classes?

One 3

Any problems?
Could we learn this -
dataset?

gainst All

Learn 3 classifiers:

« +vs{0,-}, weig
« -vs {0,+}, weig
* 0vs{+,-}, weig
Output for x:

Nts w,
Nts w.

nts w,

y = argmax, w;.x

TREEN
00000
++++++

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3

sets of weights:

e How do we
guarantee the
correct labels?

« Need new
constraints

For | possible classes:
W(yj).Xj + p¥) > w(f‘/).xj + b6 1, vy £ yi, V7

Learn 1 classifier: Multiclass SVM

Introduce slack variables, as before:

minimizey, >, wW.wlW) + C¥ ¢,

Now, can we learn it? _\ 0. +
> 28

1= 8 1+

= g ! F)

What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Relationship between SVMs and logistic regression
— 0/1 loss

— Hinge loss

— Log loss

Tackling multiple class

— One against All
— Multiclass SVMs

Whats Next!

e Learn one of the most interesting and exciting
recent advancements in machine learning

— The “kernel trick”

— High dimensional feature spaces at no extra cost!

e But first, a detour
— Constrained optimization!

Constrained optimization Minz

' X = -1
No Constraint .y
\\\\) / / 35 _\\ | / J . _\\\\
A \ / fj 3l \ / / | \ \
! / 25t \\ —> ,'/ \ LS
\\ // \,\ | / \\ /
\ / : \'\ / \ /
\ / \ / \)
N / y . /
\\ /// // \\) /
\\\ | ,// L | /05/ ; . \ \ J//
* = %
x*=0 x*=0 S+ =1

How do we solve with constraints?
- Lagrange Multipliers!!!

Lagrange multipliers — Dual variables

7 min.; 332 Add Lagrange multiplier

I\ /- Rewrite

i \ _f/,./ : S.T. L Z b Constraint

\\ / Introduce Lagrangian (objective):

T \/] L(z,a) = 2 — a(x — b)
Why does this work at all??7? We will solve:
* min is fighting max! Ming maXq L(z,a)
¢ x<b 2> (x-b)<0 = max_a(x-b)=« S.t. a >0

* min won't let that happen!! S Add new

« x>b, a>0-> (x-b)>0 = max_-a(x-b) =0, a*=0 constraint

« min is cool with 0, and L(x, a)=x? (original objective)
x=b = a can be anything, and L(x, a)=x? (original objective)
Since min is on the outside, can force max to behave and
constraints will be satisfied!!!

Dual SVM derivation (1) —
the linearly separable case

Original optimization problem:

minimizey, %w.w

(W-Xj + b) y; > 1, Vj
Rewrite One Lagrange multiplier
constraints per example

Lagrangian:

L(w,a) = %W.W — > Q; [(W.Xj + b) Y — 1}
Oij Z O, Vj

Dual SVM derivation (2) —
the linearly separable case

L(w,a) = %W.W — > [(W.Xj + b) Y — 1}
Ozj Z O, \V/]

Can solve for optimal w,b as function of a:
OL

a—wzw—z%yﬂj > W= ajyX;
J J

Also, a,>0 implies constraint is tight =2 b= yp — WXy
for any k where a; > 0

S0, in dual formulation we solve for a directly!
« w,b are computed from a (if needed)

Dual SVM interpretation: Sparsity

o

~

1
]

W'X+b:+

Ne)

+
.
2

W=) ajyX;
;

Final solution tends to

be sparse

* ;=0 for most |

« don't need to store
these points to
compute w or make
predictions

Non-support Vectors:

* a=0

- moving them will | | Support Vectors:
not change w * 020

Dual SVM formulation — linearly separable
Lagrangian: .
L(w,a) = 5w.w — [(W.Xj + b) Y — 1}
ij Z O, Vj

W = E :az’yixi

Substituting (and some advanced i
math we are skipping) produces S h — Y — W.X

for any k£ where a;. > 0

Dual SVM:

. 1
maximizea >2; a; — 530 j 04Oy Y; XX

dot product

Notes:
* max instead
of min. Zz 87

« One afor Q >0

each training R
example Sums over all

training examples

scalars

Dual for the non-separable case — same
basic story (we will skip details)

Primal: Solve for w,b,a:
minimizey %W.W +C> 256 W = Z oYX
. b=y — W.X
for any kK where C > a5 >0
Dual: o .
MaxiMmiZen) ; & — 5 2.4 j OOYY5Xi X
2 0y; = 0
What changed? Cza;20

» Added upper bound of C on a!

 Intuitive explanation:
* Without slack. a; = « when constraints are violated (points misclassified)
« Upper bound of C limits the a;, so misclassifications are allowed

Wait a minute: why did we learn about
the dual SVM?

 There are some quadratic programming

algorithms that can solve the dual faster than
the primal

— At least for small datasets

* But, more importantly, the “kernel trick”!!!
— Another little detour...

Reminder: What if the data is not linearly

separable?

Use features of features
of features of features....

_ / (1) \
()
- (1) .(2)

xr xr
o) =1 1),3)

633(1)

L

Feature space can get really large really quickly!

number of monomial terms

800

700

600

500

400

300

200

100

Higher order polynomials

_ —1)!
num. terms = d+m—1 — (d+m—1)!
d d'(m—1)!
1| d=4
m — input features
/ d — degree of polynomial
/
/ | d=3
- grows fast!
_— - d=6,m=100
e —] d=2

2 3 4 5 6 7 8 9

number of input dimensions

about 1.6 billion terms

Dual formulation only depends
on dot-products, not on w!

maximizeq > ; o; — % i j QGOGYY KX
2.3 oy = 0 \
C Z 87 Z 0]

Remember the

First, we introduce features: examples x only
X, X: D d(x:) . D(xs appear in one dot
J (%) (3) product

Next, replace the dot product with a Kernel:
. 1
MaXimizZeqn ZZ Q; — 5 ZZ,] aiajyiyjK(Xi7 XJ)
K(xi,x;) = ®(x;) - P(x;)

2oy =0
CZC%>O

Why is this useful???

Efficient dot-product of polynomials

Polynomials of degree exactly d

d=1

U v
o(u).p(v) = (:) . (!) = V1 + UpUs = U.V

Uo (V)

d=2 [\)

UL V1V
o(u).¢(v) = u;ui . v;vi — w2v? + 2uiv1Usvs + USUS
K u3) \ 12) = (w1 + upvp)?

= (u.v)?

For any d (we will skip proof):
o(u).¢(v) = (u.v)*

« Cool! Taking a dot product and exponentiating gives same
results as mapping into high dimensional space and then taking
dot produce

Finally: the “kernel trick”!

maximizea Y;a; — 5 Y s oYy K (i, %)
K(x;,x;) = P(x5) - P(x5)

25 Y = 0
CZO%>O

Never compute features explicitly!!!

— Compute dot products in closed form
Constant-time high-dimensional dot- Z 1Y (Z)
1

products for many classes of features

But, O(n?) time in size of dataset to

compute objective
— Naive implements slow
— much work on speeding up

b=y, — w.D(x;)

for any k where C > oy, > 0

Common kernels

Polynomials of degree exactly d

K(u,v) = (u-v)“
Polynomials of degree up to d
Ku,v)=(u-v+ 1)

Gaussian kernels

K(u,v) = exp (—HH_VH)

D02

Sigmoid
K(u,v) =tanh(nu-v +v)

And many others: very active area of research!

Overfitting?

 Huge feature space with kernels, what about
overfitting???
— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting
* But everything overfits sometimes!!!
e Can control by:
— Setting C
— Choosing a better Kernel
— Varying parameters of the Kernel (width of Gaussian, etc.)

What about at classification time

For a new input x, if we need to build ®(x), we are in
trouble!

Recall classifier: sign(w.d(x)+b)

Using kernels we are cool!
K(u,v) = ®(u) - ¢(v)

w = ay;P(x;)
;

b=y — W.P(xg)

for any kK where C > a5 > 0

Just need to store the support vectors and
alphas

SVMs with kernels

* Choose a set of features and kernel function
* Solve dual problem to get support vectors and .,

e At classification time: if we need to build ®(x), we
are in trouble!
— instead compute:

w-d(x) = Z oy K (%, X;)
v sign (w - P(x) + b)
b=y, — Z oy K (Xg, %;) M ’

1
for any k where C' > a; >0

Only need to store support vectors and o.!!!

Instance-based learning:
1.

Reminder: Kernel regression

A distance metric wo T
Euclidian (and many more)

How many nearby neighbors to look at?

All of them

A weighting function
w; = exp(-D(x, query)? / K ?)

How to fit with the local points?
Predict the weighted average of the outputs:

predict = Zw,y; / Iw;

SVMs v. Kernel Regression

SVMs Kernel Regression
stgn (W ;)rq’(x) +0) . (Zz yi K (x, Xz)>
stLgn
sign (Z oy K (X, %) + b) i 1 00%5)
SVMs:

» Learn weights o; (and bandwidth)
» Often sparse solution

KR:
* Fixed "weights”, learn bandwidth
« Solution may not be sparse
* Much simpler to implement

What’s the difference between SVMs
and Logistic Regression?

SVMs Logistic
Regression
Loss function Hinge Loss Log Loss

High dimensional

features with Yes!!! Actually, yes!
kernels

Kernels in logistic regression

1

PY =1lzw) = 5 T e (Wwd)Fb)

* Define weights in terms of data points:

w =) o;P(x;)
v 1
1 4 e~ (225 P (x)-P(x)+b)
1
1 _|_e_(zq;az'K(X7X’i)+b)

PlY=1|x,w) =

* Derive simple gradient descent rule on a.,b
e Similar tricks for all linear models: Perceptron, etc

What's the difference between SVMs and
Logistic Regression? (Revisited)

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
Kernels Yes! Yes!
Solution sparse Often yes! Almost always no!
Semantics of Linear model Probability
learned model from “Margin” Distribution

What you need to know

Dual SVM formulation
— How it’s derived

The kernel trick

Derive polynomial kernel
Common kernels

Kernelized logistic regression
SVMs vs kernel regression
SVMs vs logistic regression

