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Lets take a(nother) probabilistic approach!!!

* Previously: directly
estimate the data
distribution P(X,Y)!

— challenging due to size
of distribution!

— make Naive Bayes

assumption: only need
P(X;]Y)!

e But wait, we classify
according to:
— max, P(Y|X)

 Why not learn P(Y|X)
directly?
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Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly!

- Assume a particular
functional form

1
Sigmoid applied to a
linear function of the 1 + exp(—2)
data:
1
P(Y = 1]X) =

n Y.
1 +exp(wo + YL wiX;) Features can be

P(Y = 0[X) = exp(wo + XL wiXi) discrete or
- - Ltexp(wo+ XL wiXi) continuous!




Logistic Regression: decision boundary

P(Y =1|X) = : exp(wo + X1 wiXi)

1 +exp(wo+ Y1 | wiXi) ( X) 1 +exp(wo+ Y1 wiX;)

* Prediction: Output the Y with
highest P(Y|X)
— For binary Y, output Y=0 if

o
& "
| < P(Y =0|X) o +§ _
P(Y =1]X) . ¥ X -
n L =
1 <exp(wg+ Z wiX;) =
n i=1 g s i -
O<W0—|—ZWiXi i _ =

i=1

A Linear Classifier!



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each y,, i=1,...,R-1

P(Y =1|X) o< exp(wio + Z w1 X;) P(Y=y,|X)
i biggest
P(Y =2|X) o< exp(wzo + sz@X@)
( .
-1 P(Y=y3IX) \ e
PY =r[X) =13 P(Y = jIX) Diggest o

g=1



Logistic regression: discrete Y

* Logistic regression in more general case, where
Yis in the set {y,,...,Yr}

for k<R
exp(wyo + Xrq Wi X;)
1+ 5557 exp(wjo + Xy w)iX;)

P(Y = yi|X) =

for k=R (normalization, so no weights for this class)

1
1+ Zfz_ll exp(w;o + X1 q w;; X;)

P(Y = yr|X) =

Features can be discrete or continuous!



Loss functions / Learning Objectives:
Likelihood v. Conditional Likelihood

* Generative (Naive Bayes) Loss function:
Data likelihood

INnP(D|w) = nP(x?,y | w)

nP(y [ x7,w)+ Y InP | w)
j=1

N
>
j=1
N N
>
1=1
e But, discriminative (logistic regression) loss function:
Conditional Data Likelihood

N
In P(Dy | Dx,w) = > InP(y | x/),w)

J=1

— Doesn’t waste effort learning P(X) — focuses on P(Y|X) all that matters
for classification

— Discriminative models cannot compute P(x/|w)!



Conditional Log Likelihood

(the binary case only)

P(Y = 0|X,w) = 1
1+ exp(wg + >; w; X;)
I(w)=) In P(y’|x7, w) P(Y = 1[X,w) = exp(wo + 3; wiX;)
j 1+ exp(wg + > ; w; X;)

@ equal because yiis in {0,1}

(w) = Y ¢/ InP(y/ =1]x7,w) + (1 —¢)) In P(y/ = 0|x7, w)
J
@ remaining steps: substitute definitions, expand logs, and simplify
wo+_; wi X | 1

. 1+ ewot2
J




Logistic Regression Parameter Estimation:
Maximize Conditional Log Likelihood

I(w) = In H P(y’|x7, w)
J

— Zyj(wo + Zwi:pg) —In(1 + exp(wp + Zwﬂg))
j i @'

Good news: /(w) is concave function of w
— no locally optimal solutions!
Bad news: no closed-form solution to maximize /(w)

Good news: concave functions “easy” to optimize



Optimizing concave function —
Gradient ascent

e Conditional likelihood for Logistic Regression is concave !

ol(w) ol(w)

o Gradent g W) =1 K
? ~ Update rule:
y P Aw = 1V wl(w)

(t+1) ) , ol(w)
w - «— W- n
v v I 8’11)2

* Gradient ascent is simplest of optimization approaches
— e.g., Conjugate gradient ascent much better (see reading)



Maximize Conditional Log Likelihood: Gradient ascent

exp(wo + >2; w; X;)
1+ exp(wg + >; w; X;)

I(w) = S v/ (wo+ Y wizd) —In(1 + exp(wg + Y wiz)))
7 7 7

—a(‘l)EZ) = Z [;wyj(wo + zz:szUZ) — (9% In (1 + exp(wo + ;wzl’i)”

J

P(Y =1|X,W) =

i ZE‘Z exp(wo + > _, w@xf)
=D |V -
J

1+ exp(wo + >, wzxf)

J

1+ exp(wo + >, wzxi)




Gradient Descent for LR

Gradient ascent algorithm: (learning rate r > 0)

do:
wi T — w40 Y~ P(YT =1 %, w)]
J

For i1=l..n: (iterate over weights)

wi™ — w4 S al - P(YT = 1| %, w))
j

until “change” < ¢ \

Loop over training examples!



Large parameters... | .=
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 Maximum likelihood solution: prefers higher weights

— higher likelihood of (properly classified) examples close to
decision boundary

— larger influence of corresponding features on decision
— can cause overfitting!!!

* Regularization: penalize high weights
— again, more on this later in the quarter



That’s all M(C)LE. How about MAP?
p(w|Y,X) oc P(Y | X, w)p(w)

 One common approach is to define priors
onw

— Normal distribution, zero mean, identity
covariance H 1

“ ” p(w) =
— “Pushes” parameters towards zero

e Often called Regularization
— Helps avoid very large weights and overfitting

* MAP estimate: N

* — J | xJ
w" = arg maxin p(wW) .Hl P(y’ | x7,w)
]:




M(C)AP as Regularization

N 1 —Y

* = | % = 2k2
w" = arg maxin !p(w) jl;Il Py’ | x7,w) p(w) |Z| o e
* Add log p(w) to objective:
A 0 Inp(w)
|n - '2 p _— .
p(w) o 5 Ez W 90, Aw;

— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

Penalizes high weights, also applicable in linear regression



MLE vs. MAP

e Maximum conditional likelihood estimate

N
* — J | ~J
w* =argmaxin Ll:[lP(y | x ,w)]

w™ w4 S aly - P(YT = 1| %, w),
j

 Maximum conditional a posteriori estimate

N
* J | ~J
w* = argmaxIn [p(w) 'H1 P(y) | x ,w)]
]:

wi™D w4y {—/\wfﬂ + > ally — P(YI =1, w)]}
J




Logistic regression v. Naive Bayes

* Consider learning f: X 2 Y, where
— Xis a vector of real-valued features, <X, ... X >

— Y is boolean

* Could use a Gaussian Naive Bayes classifier

— assume all X; are conditionally independent given'Y
— model P(X, | Y =y,) as Gaussian N(w,,,0;)
— model P(Y) as Bernoulli(6,1-0)

 What does that imply about the form of P(Y|X)?

1
P(Y =1|1X =< Xq,..Xp >) =

1 + exp(wo + > w; X;)
Coolllll



Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y =1)
P(Y =1)P(X|Y = 1)+ P(Y =0)P(X|Y =0)

Py =1|X) =

1

1+ P(Y=0)P(X|Y=0)
P(Y=1)P(X|Y=1) _ .
1 @ up to now, all arithmetic

P(Y=0)P(X|Y=0)
1 4 exp(In p(Yzl)P(XIYzl))

1
1+ exp( (In159) + 5 In ST =00

- \

_ _ Can we solve for w; ?
Looks like a setting for w,? * Yes, but only in Gaussian case

@ only for Naive Bayes models




Ratio of class-conditional probabilities

(.32
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Derive form for P(Y|X) for continuous X

P(Y = 1|X) = P(Yy = 1)P(X|Y =1)

P(Y = 1)P(X|Y = 1)+ P(Y = 0)P(X|Y = 0)

1
1+ exp( (In159) + % In pRir =)

Z Hi0 — leX + /Lil — 'uiQO
0Z 202

1




Gaussian Naive Bayes vs. Logistic Regression

Set of Gaussian o
Naive Bayes parameters <:I\> Set of Logistic

(feature variance Regression parameters

independent of class label) v\g‘;’; g\zeb:;?y

did one way

Representation equivalence
— But only in a special case!!! (GNB with class-independent variances)

But what’s the difference???

LR makes no assumptions about P(X|Y) in learning!!!

Loss function!!!

— Optimize different functions ! Obtain different solutions



Naive Bayes vs. Logistic Regression

Consider Y boolean, X; continuous, X=<X, ... X >
Number of parameters:

* Naive Bayes: 4n +1

* Logistic Regression: n+1

Estimation method:
* Naive Bayes parameter estimates are uncoupled
* Logistic Regression parameter estimates are coupled



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

* Generative vs. Discriminative classifiers
* Asymptotic comparison
(# training examples =2 infinity)

— when model correct

 GNB (with class independent variances) and
LR produce identical classifiers

— when model incorrect

e LR is less biased — does not assume conditional
independence

— therefore LR expected to outperform GNB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]
e Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
 Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
 Logistic Regression needs O(n) samples

— GNB converges more quickly to its (perhaps less
helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression: solid line is naive Bayes,



What you should know about Logistic
Regression (LR)

Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

— Solution differs because of objective (loss) function

In general, NB and LR make different assumptions

— NB: Features independent given class ! assumption on P(X|Y)
— LR: Functional form of P(Y|X), no assumption on P(X|Y)

LR is a linear classifier

— decision rule is a hyperplane

LR optimized by conditional likelihood

— no closed-form solution

— concave ! global optimum with gradient ascent

— Maximum conditional a posteriori corresponds to regularization

Convergence rates
— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit



