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Prediction of continuous variables

Billionaire says: Wait, that’s not what | meant!
You say: Chill out, dude.

He says: | want to predict a continuous
variable for continuous inputs: | want to
predict salaries from GPA.

You say: | can regress that...




Linear Regression

f1(x)

Prediction Prediction

y = wo + wi f1(x) g = wo + w1 f1(x) + wafo(x)



Ordinary Least Squares (OLS)
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The regression problem

Instances: <X; {,>

Learn: Mapping from x to t(x) H = {hla SRR hK}
Hypothesis space: ~

— Given, basis functions {#4,,...,h,} t(x) ~ f(x) = Zz w;hi(x)

— Find coeffs W={W1: ---:Wk} data

— Why is this usually called linear regression?
* modelis linear in the parameters
e Can we estimate functions that are not lines???

Precisely, minimize the residual squared error:

W= argm“ifnz t(xj)—Zwihi(Xj)
j i



Regression: matrix notation
w = arg m“ll_nz (t(Xj) — szhz(Xj)>

w* = argmin(Hw —t)’ (Hw — t)
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Regression solution: simple matrix math

w* = argmin (Hw —t)! (Hw — t)
w —/_/
residual error

solution: w* = (H™H) ' H™t = A~ 'b

—_——
A-1 b
where A = H'H = b=H"t —
kxk matrix kx1 vector

for k basis functions



But, why?

Billionaire (again) says: Why sum squared

error???

You say: Gaussians, Dr. Gateson, Gaussians...

Model: prediction is linear function plus

Gaussian noise
—t(x) =, w, h(x) +¢

Learn w using MLE:

P(t|x,w,o) =




Maximizing log-likelihood

Maximize wrt w:

1 N N _[tj_z'i wihi(Xj)]Q
o\ 2T =1

1 N N —\t; — ~w;h; (x5 2
arg maxIn ( ) + Z b = 25 wihi(x;)]
o

INnP(D |w,0) = In(

D02

Least-squares Linear Regression is MLE for Gaussians!!!




Bias-Variance tradeoff — Intuition

* Model too simple: does |

not fit the data well o AN
— A biased solution o

* Model too complex: small
changes to the data, t
solution changes a lot ol

— A high-variance solution

1t M=9 A




(Squared) Bias of learner

Given: dataset D with m samples

Learn: for different datasets D, you will get different
functions h(x)

Expected prediction (averaged over hypotheses): E,[A(x)]
Bias: difference between expected prediction and truth

— Measures how well you expect to represent true
solution

— Decreases with more complex model

bias? = [ {Eplh(a)] - (@)} p(a)da



Variance of learner

Given: dataset D with m samples

Learn: for different datasets D, you will get different
functions h(x)

Expected prediction (averaged over hypotheses): E,[A(x)]

Variance: difference between what you expect to learn and
what you learn from a from a particular dataset

— Measures how sensitive learner is to specific dataset
— Decreases with simpler model

h(x) Eplh(z)]
variance — /ED[(h(a;) — h(2)?]p(x)dz



Bias—Variance decomposition of error

* Consider simple regression problem f:X—2>T
f(x) = g(x) + ¢

/ noise ~ N(0,0)

deterministic

e Collect some data, and learn a function h(x)
 What are sources of prediction error?

Ep| [ [(h(@) = )p(tl2)p(e)dtda



Sources of error 1 — noise
f(x) = g(x) + ¢

 What if we have perfect learner, infinite
data?

— If our learning solution h(x) satisfies h(x)=g(x)

— Still have remaining, unavoidable error of
o2 due to noise ¢

error(h) = /a;/t(h($> —)%p(f(z) = t|x)p(x)dtdz



Sources of error 2 — Finite data
f(x) = g(x) + ¢
* What if we have imperfect learner,
or only m training examples?

 What is our expected squared error per
example?

— Expectation taken over random training sets D of
size m, drawn from distribution P(X,T)

Ep| [ [{h() — tp(f(2) = tio)p(a)dtda



Bias-Variance Decomposition of Error

Bishop Chapter 3  Assume target function: t(x) = g(x) + ¢

« Then expected squared error over fixed size training sets D
drawn from P(X,T) can be expressed as sum of three

components:
/x/t(h(‘”) — t)?p(t|x)p(x)dtdx

— unavordable Error + bias? + variance
Where:

Ep

unavordable Error = 02
2

vias? = [(Eplh(e)] - 9(2))2p(x)da
h(z) = Ep[h(x)]
variance =— /ED[(h(CC) — h(2))?]p(z)dx



Bias-Variance Tradeoff

* Choice of hypothesis class introduces learning
bias

— More complex class — less bias

— More complex class — more variance
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Training set error » = sy (- Sunce)

* Given a dataset (Training data)
 Choose a loss function
— e.g., squared error (L,) for regression

* Training error: For a particular set of
parameters, loss function on training data:

Ntraz'n 2
1
errorirain(W) = N Z <t(xj) — Zwihi(xj))



Training error as a function of model

errorirain(W) =
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Prediction error A

* Training set error can be poor measure ~—-=.
of “quality” of solution

* Prediction error (true error): We really
care about error over all possibilities:

errorirue(w) = FEy (t(x)szhz(x)>

= / <t(x)Zwihi(x)> p(x)dx



Prediction error as a function of model
complexity

errorirain(W) =
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Computing prediction error

* To correctly predict error

* Hard integral!
« May not know t(x) for every x, may not know p(x)

ErTorrye(W) = /(t(x)—Zwihi(x)> p(x)dx

* Monte Carlo integration (sampling approximation)
« Sample a set of i.i.d. points {x;,...,X,} from p(x)
* Approximate integral with sample average

efr"rortme(w) ~ % Z <t(Xj) — Zwihi(xj)>



Why training set error doesn’t
approximate prediction error?

 Sampling approximation of prediction error:

ETTOTtrye(W) = % (t(Xj) — Z wihi(xj))

* Training error :

Ntraz'n 2
1
erTOTtrain(W) = N > (t(xj)_zwihi(xj)>
rain =

* Verysimilar equations!!!

— Why is training set a bad measure of prediction error???



Why training set error doesn’t
approximate prediction error?

* oq Because you cheated!!!

Training error good estimate for a single w,
But you optimized w with respect to the training error,

and found w that is good for this set of samples

Training error is a (optimistically) biased
estimate of prediction error

* Verysimilar equations!!!

— Why is training set a bad measure of prediction error???



Test set error = e (1)~ Tt

* Given a dataset, randomly split it into two
parts:

— Training data — {X,..., Xyirain}
— Test data — {X,, ..., Xyect}

e Use training data to optimize parameters w

e Test set error: For the final solution w*,
evaluate the error using:

Ntest

2
1
erroriest(wW) = N E (t(Xj)_E wihi(xj)>

j=1




Test set error as a function of model
complexity
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Overfitting: this slide is so important we

are looking at it again!
* Assume:
— Data generated from distribution D(X Y)
— A hypothesis space H

* Define: errors for hypothesis 7 € H
— Training error: error,, . (h)
— Data (true) error: error,, (h)

« \We say / overfits the training data if there exists
an h’ € H such that:

errOrtrain(h) < errOrtmin(h,)
and
error

(h) > errartme(h’)

true



Summary: error estimators

e Gold Standard:

ErTorirye(W) = /(t(X)—sz‘hz'(X)> p(x)dx

* Training: optimistically biased

Nt'r’ain 2
1
ErTO  train(W) = N <t(xj) — Z w@’hi(xj)>




Error as a function of number of training \r e
examples for a fixed model complexity v |

- ~ =3 3
- " b
N \bﬁ/ ~—
) Y <
e~ N S
< ~—
S = | -
N < |
S co
| NEIRE
—~ | ~
N
Y — || 3 v~
= N2 gN-!L
\_—/ N————— +~
W

O
+~

£ . — ‘—42

errorirain(W) =

errorimye(W)
erToriest (W)

little data infinite data



Summary: error estimators

. Be careful!l!

Test set only unbiased if you never never ever ever
do any any any any learning on the test data

For example, if you use the test set to select
the degree of the polynomial... no longer unbiased!!!
(We will address this problem later in the semester)

* Test: our final meaure, unbiased?

Ntest 2
1
erroriest(wW) = N E (t(xj)—g wzhz(xj)>
est




What you need to know

Regression
— Basis function = features
— Optimizing sum squared error
— Relationship between regression and Gaussians

Bias-Variance trade-off
Play with Applet

— http://mste.illinois.edu/users/exner/java.f/leastsquares/

True error, training error, test error
— Never learn on the test data

Overfitting



