CSE546: Ensemble Learning -
Bagging and Boosting
Winter 2012

Luke Zettlemoyer

Slides adapted from Carlos Guestrin, Nick Kushmerick, Padraig
Cunningham

Voting (Ensemble Methods)

* Instead of learning a single classifier, learn many
weak classifiers that are good at different parts of

the data
e Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more

conviction
— Classifiers will be most “sure” about a particular part of

the space
— On average, do better than single classifier!

 But how???
— force classifiers to learn about different parts of the input
space? different subsets of the data?

— weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation
(Breiman, 1996)

e fori=1,2, ..., K:

— T, € randomly select M training instances
with replacement

—h, & learn(T;) [ID3, NB, kNN, neural net, ...]

* Now combine the T, together with
uniform voting (w;=1/K for all 1)

Bagging Example

1.0

0.5

0.0

-0.5

-1.0

x1

deC|S|on tree learning algorithm; very similar to ID3

CART decmon boundary

o
-

-

0.5

0.0
|

-1.0

-1.0 -0.5 0.0 0.5

1.0

100 bagged trees

o
-—

-

0.5

0.0
1

-1.0

-1.0 -0.5 0.0 0.5

shades of blue/red indicate strength of vote for particular classification

1.0

Regression results

Squared error loss

CART
Bagged CART

Boston Housing Ozone

Friedman #1

Friedman #2

Friedman #3

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners are good

— e.g., haive Bayes, logistic regression, decision
stumps (or shallow decision trees)

— Low variance, don’t usually overfit

* Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

 Can we make weak learners always good???
— No!ll
— But often yes...

Boosting [Schapire, 1989]

ldea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a hypothesis — h,
— A strength for this hypothesis — o,

Final classifier: h(z) = sign (Z aihi(x)>

Practically useful
Theoretically interesting

¥} | L] http://www1.cs.columbia.edu/~freund/adaboost/

time =0

blue/red = class

size of dot = weight

weak learner =
Decision stub:
horizontal or vertice

Hypothesis Error:

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@@

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =1

this hypothesis has

error
ey Training Error: 0.14935064
Test Emor 0.2
0.14935064
0sl _ _ and so does
- Theoretical bound: 0.7128675€ . .
this ensemble, since
the ensemble contain:
01— s . just this one hypothes
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@@

¢ prediction sum ¥ Training set
& prediction rule I~ Test set

time = 2

9"01" Training Error: 0.14935064
Test Ermror 02
\\ 0.2049447¢
0a] Theoretical bound: 0.575514
g : :
1 5 10
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go I@,

¢ |
O |8
@

@|g)

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =3

9"01" Training Error: 0.0649350€
Test Ermror 0.10967742
\ 0.1930939
0a] Theoretical bound: 0.4543407€
B— "qu_‘__\-h
0 1 |
1 5 10

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ I[_] http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time =13

reset

step

ermoy Training Error: 0.01948051
Test Emor 0.05806451
0.2570794¢
051 Theoretical bound: 0.1472900%
0 :%\wf*;i__
1 10 20
iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ ID http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time = 100

reset

step

ermoy Training Error: 0.0
Test Error 0.0451612¢
0.38621867
0.8 Theoretical bound: 0.00725897
o
1 80 160

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Bookmarks Tools Help

@ I[_] http://www1.cs.columbia.edu/~freund/adaboost/ EI © Go |@,

¢ |
O |8
@

© |ig

¢ prediction sum V¥ Training set
& prediction rule [~ Test set

time = 300

reset

step

overfitting

ermoy Training Error: 0.0
Test Emor 0.0451612¢
0.38959894
U-ix Theoretical bound: 4.806434E-
1 160 220

iteration

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set:
| Applet adaboost started

Learning from weighted data

* Consider a weighted dataset
— D(i) — weight of i th training example (x',y')
— Interpretations:

* jth training example counts as if it occurred D(i) times

* If | were to “resample” data, | would get more samples of
“heavier” data points

* Now, always do weighted calculations:
— e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted count:

Count(Y =y) = ZD(j)5(Yj =y)

j=1

— setting D(j)=1 (or any constant valuel!), for all j, will recreates
unweighted case

Given: (21,Y1),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize D;(z) = 1/m.

How? Many possibilities. Will
Fort=1,...,T: Y P

see one shortly!

Train base learner using distribwtion D;. Why? Reweight the data:

Get base classifier h;_2€— R. examples i that are

o

o

e Choose a; € R. / misclassified will have
e Update: higher weights!

Dy(7) exp(—ay;hi(z;))

D1 (i) = 7
t * yih(x;) >0 > h, correct
where Z; is a normalization factor * yh(x) <0 = h, wrong
m
Zv="Y Di() exp(—auhe(z)) * Moorect 420
=1 Dy.4(1) < D(i)
Output the final classifier: « h,wrong, a> 0 >
. Des(i) > D)
H(z) = sign (Z atht(x)) :
—! Final Result: linear sum of

~ “base” or “weak” classifier

outputs.
Figure 1: The boosting algorithm AdaBoost.

Given: (21,91), -+, (ZTms Ym) ‘et — PyjNDt(@') [ht(Xi) # yz]

Initialize Dy (i) = 1/m.
Fort=1,...,T:

Get base classifier h; : X — R.

et = > Di(1)d(hi(x;) # v;)
i=1

Choose o € R. <
Update:

Train base learner using distribution D. 1 —e
— &t
oy — %ln ()

€t

Dy (i) exp(—oayyihi(x;))

Dyy1(i) =

* & . error of h,, weighted by D,

* 0<¢ <1

*q,:
* No errors: =0 2 q,=
* Allerrors: =1 > q,=—°
* Random: ¢=0.5 2 a,=0

Zt

What ¢, to choose for hypothesis /,?

[Schapire, 1989]
Idea: choose &, to minimize a bound on training error!

— Z 0(H(x;) #y;) < — Z exp(—y;f(x;))
Where (CC) — Z@tht(l‘) H(x) = szgn(f(a?))

exp(—y; f(x;))

SCH @) =l

What ¢, to choose for hypothesis /,?
[Schapire, 1989]

ldea: choose a, to minimize a bound on training error!

=S S(H () #) < D exp(—yif (o) = [[%
i=1 0 t

Where T
flx) =) ahy(x); H(x) = sign(f(x))
t

And This equality isn't
| obvious! Can be

m
Zy =) Di(3) exp(—ayihi(z;)) shown with algebra
i—=1 (telescoping sums)!

If we minimize [], Z,, we minimize our training error!!!

* We can tighten this bound greedily, by choosing o, and #,
on each iteration to minimize Z,

* h,is estimated as a black box, but can we solve for a,?

Summary: choose a,to minimize error bound
[Schapire, 1989]

We can squeeze this bound by choosing a, on each
iteration to minimize Z,

™m
Zy = > Dy(i) exp(—oyy;hi(x;))
1=1 m
et = Y Di(0)6(hi(x;) # yi)
i=1

For boolean Y: differentiate, set equal to O, there is a
closed form solution! [Freund & Schapire '97]:

1—€t
at:%ln< €t)

Strong, weak classifiers

* If each classifier is (at least slightly) better than
random: g <0.5

e Another bound on error:

m

1 T
— > 6(H(zy) #=v;) <]] 2 <exp (—2 > (1/2- 6t)2)
* What does this imply about the training error?

— Will reach zero!

— Will get there exponentially fast!

* Is it hard to achieve better than random training
error?

Boosting results — Digit recognition
[Schapire, 1989]

/ Test error

.

Training error

T TR
rounds
* Boosting:
— Seems to be robust to overfitting

— Test error can decrease even after
training error is zero!!!

Boosting generalization error bound
[Freund & Schapire, 1996]

T'd

erroryue(H) < errartmm(H)—i—@ —
m

Constants:

* T: number of boosting rounds
— Higher T = Looser bound, what does this imply?

 d:VCdimension of weak learner, measures
complexity of classifier
— Higher d = bigger hypothesis space = looser bound
* m: number of training examples
— more data =2 tighter bound

Boosting generalization error bound
[Freund & Schapire, 1996]

~ Td
GTTOTWUG(H) S eTTOTt’rain(H) + O (—)

Constants:

- Theory does not match practice:
- Robust to overfitting

- Test set error decreases even after training error is
Zero

- Need better analysis tools
- we’ll come back to this later in the quarter

— more data =2 tighter bound

Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets

™ ™
30 ° :‘ ° ® “
™ ™
25 p
™
™ ™
O 20 ™ ™Y
< ™ ™
9 15 . % . °* W ™
2 o ‘
g 10 o .
5 [4 e
® e ‘o
) ™ W)
O®* © L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
error,

boosting stumps €Mhoosting C4.5

Lz Train Imd AdaBoost.MH on ft) and Test (right) dat

Train [rerepository. [§ Test frd Singer, ML 1999]

—
30
16 - 20Q-.-
14 % kbor labor ’\% promoters promotzrs
12 - 2s 15 rI
\ 3
10 \ 20 ||','
8 - | A A
\ \' w')_’ \
6 - | 15 1\
4 - 'l L'?;
™ %
2- i 10 - \,
0 Mo M,
1 10 100 1000 1 1 10 100 1000
20 ey
hepatitis 22 sonar
21 '- -
15 - E
e 20
10 - 19
18 -
5 - 17
" 16
o i -
1 10 100 1000 1 100 1000 1 10 100 1000
30 . 16 18 - 1
Y cleve 78 cleve \ wnosphere Y onospheare
20 28 = 14 15 \
15 - 10 AP 14 VA A
L
o : N\ 12 N,
.,
5- 4 ' N i
2 8- N——)
0 - of) e) = B e
1 10 100 1000 g1 10 100 1000 1 10 100 1000
45 -, 15 \:
4 votes | 16 - votes |
35 -
3
25 - ,/"»I
2-
15 - \
1
05 -
0 - s ‘ ‘e - -
1 10 100 10 10 100 1000
14 \ breastcancal-wisconsin
\
12 - |
1
10 Al
8 PR
6 -.L- .1\
4
2 . R
1 10 100 1000 1 10 100 1000
.

Logistic Regression as Minimizing Loss

Logistic regression assumes:

1
PO =11X) = o fla) =wo+ Zwihi(x)

And tries to maximize data likelihood, for Y={-1,+1}:

N
. o
o InP(Dy | Dx,w) = Y InP(y’ | %/,
P(y;lx;) = =y icy (Dy | Dx, w) j; (y7 | x7, w)
= — > In(1 + exp(—y;f(x;)))

1=1

Equivalent to minimizing log loss:

Y In(1 4 exp(—y;f(z;)))
i=1

Boosting and Logistic Regression

Logistic regression equivalent Boosting minimizes similar
to minimizing log loss: loss function:

m

IN(1 + exp(—y; f(x;))) %ZGXD(—yif(wz‘)) =] %
i /

\ /:
20F

S(H () #)|~ \

—I.OI .—0.5. e .()TS
y; f ()

Both smooth approximations of 0/1 loss!

1

1

1.0 1.5 2.0

Logistic regression and Boosting

Logistic regression: Boosting:
* Minimize loss fn * Minimize loss fn

Zgjl In(1 4 exp(—y;f(x;))) Z; exp(—yif(xi))

e Define * Define
@) = X wge; flz) = ; athi(z)
T where 4,(x;) defined
where x; predefined dynamically to fit data
* Jointly optimize parameters Weights o, learned
. . J
Wo, Wy, ... W, Via gradient incrementally (new one

ascent. for each training pass)

What you need to know about Boosting

Combine weak classifiers to get very strong classifier
— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can get zero training error

AdaBoost algorithm

Boosting v. Logistic Regression

— Both linear model, boosting “learns” features

— Similar loss functions

— Single optimization (LR) v. Incrementally improving
classification (B)

Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier

