CSE546: Ensemble Learning Bagging and Boosting Winter 2012

Luke Zettlemoyer

Voting (Ensemble Methods)

- Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

But how???

- force classifiers to learn about different parts of the input space? different subsets of the data?
- weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation (Breiman, 1996)

- for i = 1, 2, ..., K:
 - − T_i ← randomly select M training instances with replacement
 - $-h_i \leftarrow learn(T_i)$ [ID3, NB, kNN, neural net, ...]

 Now combine the T_i together with uniform voting (w_i=1/K for all i)

Bagging Example

CART decision boundary

100 bagged trees

shades of blue/red indicate strength of vote for particular classification

Regression results Squared error loss

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don't usually overfit
- Simple (a.k.a. weak) learners are bad
 - High bias, can't solve hard learning problems

- Can we make weak learners always good????
 - No!!!
 - But often yes...

Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h₊
 - A strength for this hypothesis $\alpha_{\rm t}$

• Final classifier:
$$h(x) = \mathrm{sign}\left(\sum_i \alpha_i h_i(x)\right)$$

- Practically useful
- Theoretically interesting

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press split to split the data into training and test se

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

O Go G

time = 100

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

Learning from weighted data

Consider a weighted dataset

- D(i) weight of i th training example $(\mathbf{x}^i, \mathbf{y}^i)$
- Interpretations:
 - *i*th training example counts as if it occurred D(i) times
 - If I were to "resample" data, I would get more samples of "heavier" data points

Now, always do weighted calculations:

e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count:

$$Count(Y = y) = \sum_{j=1}^{n} D(j)\delta(Y^{j} = y)$$

 setting D(j)=1 (or any constant value!), for all j, will recreates unweighted case Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

How? Many possibilities. Will see one shortly!

• Train base learner using distribution D_t .

• Get base classifier $h_t: X \to \mathbb{R}$.

• Choose $\alpha_t \in \mathbb{R}$.

• Update:

Why? Reweight the data: examples i that are misclassified will have higher weights!

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z}$$

where Z_t is a normalization factor

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
• $y_i h_t(x_i) > 0 \rightarrow h_i$ correct
• $y_i h_t(x_i) < 0 \rightarrow h_i$ wrong
• $z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$
• h_i correct, $\alpha_t > 0 \rightarrow D_{t+1}(i) < D_t(i)$

Output the final classifier: i=1

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

 $D_{t+1}(i) < D_t(i)$

• h_i wrong, $\alpha_i > 0 \rightarrow$ $D_{t+1}(i) > D_t(i)$

Final Result: linear sum of "base" or "weak" classifier outputs.

Figure 1: The boosting algorithm AdaBoost.

Given:
$$(x_1, y_1), \ldots, (x_m, y_m)$$

Initialize $D_1(i) = 1/m$.

For
$$t = 1, ..., T$$
:

$$\epsilon_t = P_{i \sim D_t(i)}[h_t(\mathbf{x}^i) \neq y^i]$$

 $\alpha_t = \frac{1}{2} \ln \left(\right)$

$$\epsilon_t = \sum_{i=1}^m D_t(i)\delta(h_t(x_i) \neq y_i)$$

- Train base learner using distribution D_t .
- Get base classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

- ε_t : error of h_t , weighted by D_t
 - $0 \le \varepsilon_t \le 1$
- α_t :
 - No errors: $\varepsilon_t = 0 \rightarrow \alpha_t = \infty$
 - All errors: $\varepsilon_t = 1 \rightarrow \alpha_t = -\infty$
 - Random: ε_t =0.5 $\rightarrow \alpha_t$ =0

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Idea: choose α_t to minimize a bound on training error!

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$
 Where
$$f(x) = \sum_{t} \alpha_t h_t(x); H(x) = sign(f(x))$$

$$\sum_{t=1}^{2.5} \exp(-y_i f(x_i))$$

$$\sum_{t=1}^{2.5} \exp(-y_i f(x_i))$$

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Idea: choose α_t to minimize a bound on training error!

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$
Where
$$f(x) = \sum_{t} \alpha_t h_t(x); H(x) = sign(f(x))$$
This equality isn't

And $Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$

This equality isn't obvious! Can be shown with algebra (telescoping sums)!

If we minimize $\prod_t Z_t$, we minimize our training error!!!

- We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t
- h_t is estimated as a black box, but can we solve for α_t ?

Summary: choose α_t to minimize *error bound* [Schapire, 1989]

We can squeeze this bound by choosing α_t on each iteration to minimize Z_t

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

$$\epsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)$$

For boolean Y: differentiate, set equal to 0, there is a closed form solution! [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Strong, weak classifiers

- If each classifier is (at least slightly) better than random: $\epsilon_{\scriptscriptstyle t}$ < 0.5
- Another bound on error:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{m} Z_t \leq \exp\left(-2\sum_{t=1}^{m} (1/2 - \epsilon_t)^2\right)$$

- What does this imply about the training error?
 - Will reach zero!
 - Will get there exponentially fast!
- Is it hard to achieve better than random training error?

Boosting results - Digit recognition

[Schapire, 1989]

Boosting:

- Seems to be robust to overfitting
- Test error can decrease even after training error is zero!!!

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

Constants:

- *T*: number of boosting rounds
 - Higher T → Looser bound, what does this imply?
- d: VC dimension of weak learner, measures complexity of classifier
 - Higher d → bigger hypothesis space → looser bound
- *m*: number of training examples
 - − more data → tighter bound

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

Constants:

- Theory does not match practice:
 - Robust to overfitting
 - Test set error decreases even after training error is zero
- Need better analysis tools
 - we'll come back to this later in the quarter
 - more data → tighter bound

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

Logistic Regression as Minimizing Loss

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \quad f(x) = w_0 + \sum_i w_i h_i(x)$$

And tries to maximize data likelihood, for Y={-1,+1}:

$$P(y_i|\mathbf{x}_i) = \frac{1}{1 + e^{-y_i f(\mathbf{x}_i)}} \quad \ln P(\mathcal{D}_Y \mid \mathcal{D}_X, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$
$$= -\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

Equivalent to minimizing log loss:

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss:

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \qquad \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

$$\delta(H(x_i) \neq y_i)$$

$$\delta(H(x_i) \neq y_i)$$

$$y_i f(x_i)$$

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:

Minimize loss fn

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_{j} x_{j}$$

where x_j predefined

• Jointly optimize parameters $w_0, w_1, ... w_n$ via gradient ascent.

Boosting:

Minimize loss fn

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_t(x_i)$ defined dynamically to fit data

• Weights α_j learned incrementally (new one for each training pass)

What you need to know about Boosting

- Combine weak classifiers to get very strong classifier
 - Weak classifier slightly better than random on training data
 - Resulting very strong classifier can get zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Both linear model, boosting "learns" features
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier