An Overview of Query
Optimization in Relational
Systems

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com
http:/research.microsoft.com/~surajitc

Multi-Block Queries

O Multi-block structure arises due to
O views with aggregates
U table expressions
U nested sub-queries
OTechniques for Optimization
U Merge into a single block
0 Share information across blocks

4/28/99 ©Surajit Chaudhuri 31

Example of A Nested
Subquery

Select Emp.Name
From Emp
Where Emp. Age < 30
And Emp.Dept# IN
(Select Dept.Dept#
From Dept
Where Dept.Loc = “"Denver”
AND Emp.Emp# = Dept.Mgr)

4/28/99 ©Surajit Chaudhuri

Merging Nested Subquery

Select Emp.Name

From Emp

Where Emp.age < 30 And Emp.Dept# IN
(Select Dept.Dept#

From Dept

Where Dept.Loc = “Denver”

And Emp.Emp# = Dept.Mgr)

0 Think of “IN” as a Join between Emp and Dept
ON {Emp.Dept# = Dept.Dept# ,
Emp.Emp# = Dept.Mgr}

4/28/99 ©Surajit Chaudhuri 33

Equivalent Single Block
Query

0 Select Emp.Name

O From Emp, Dept

0O Where Emp.Age < 30

0 Emp.Dept# = Dept.Dept#
0O And Emp.Emp# = Dept.Mgr
0 And Dept.Loc = “Denver”

4/28/99 ©Surajit Chaudhuri

Nested Subquery with
Aggregates

Select D.Name

From Dept D

Where D.parking < =
(Select count (E.Emp#)
From Emp E
Where E.Dept# = D. Dept #)

4/28/99 ©Surajit Chaudhuri 35




Merging Nested Subqueries

0 Results in a left outerjoin between the parent and
the child block (preserves tuples of the parent)

0 Outerjoin reduces to a join for sum(), average(),
max(), min()

U Transformed Query:

Optimization Across
Blocks

0 Collapsing into a single block query is not
always feasible or beneficial

0 We can still optimize by “sideways
information passing” across blocks

0 Idea similar to semi-join

4/28/99 ©Surajit Chaudhuri 37

Select D.Name Select D.name

From Dept D From Dept D LOJ Emp E

Where D.parking < ON (E.Dept# = D.Dept#)

Select count(E.Emp#) Group By D.#

From Emp E Having D.parking

Where E.Dept# = D. Dept # < count(E.Emp#)
4/28/99 ©Surajit Chaudhuri 36
Semi-Join

O Proposed for optimizing distributed
queries
[ Operator introduction
0 Sideways Information Passing (SIP)

OSemi-Join (R,S', P): Join that preserves all
attributes of R
O Apply local selection on S
O Transmit projection of result (S") to R
OR’ = Semi-Join (R,S',P)
0 Join (R,Sel(S), P) = Join (R, Semi-Join (R, Sel(S), P))

4/28/99 ©Surajit Chaudhuri 38

Exploiting Semi-Join

0 Outer provides inner with a list of potentially
required bindings (“sideways information
passing”)

0 Helps restrict inner's computation

0 “Once only” invocation of inner for each binding

4/28/99 ©Surajit Chaudhuri 39

Example: A Query with a
View

Create View DepAvgSal as

(Select E.did, Avg(E.Sal) as avgsal

From Emp E
Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsal V
Where E.did = D.did And D.did = V.did
And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

4/28/99 ©Surajit Chaudhuri 40

Example: Use of SIP

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsal V
Where E.did = D.did

And E.did = V.did

And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

0 DepAvgsal needs to be evaluated only for

cases where V.did IN
Select E.did
From Emp E, Dept D
Where E.did = D.did
And E.age < 30 and D.budget > 100k

4/28/99 ©Surajit Chaudhuri 41




Example: Result of SIP

Supporting Views
A) Create view ED as (Select E.eid, E.did, E.sal
From Emp E, Dept D
Where E.did = D.did
And E.age < 30 and D.budget > 100k)
B) Create View LAvgSal as (
Select E.did, Avg(E.Sal) as avgsal
From Emp E, ED
Where E.did = ED.did
Group By E.did )
Transformed Query
Select ED.eid, ED.sal
From ED, Lavgsal

Where E.did = ED.did and ED.sal > Lavgsal.avgsal
4/28/99 ©Surajit Chaudhuri 42

Predicate Propagation
Across Blocks

0Q = Join (A, B)
OSelection on Q can translate to selections on
view A
0Q = Intersect (A, B)

OSelection on A can translate into a selection
onB

OYet another use of SIP

4/28/99 ©Surajit Chaudhuri 43

Comments on Multi-Block
Transformations

0 Strong Synergy

0 Nested Sub-query => Single Block
transformations result in J/OJ expressions

0 SIP (semi-join) techniques result in use of “extra”
views

0 Merging views directly related to commuting
Group By and Join

O Caveats:

0 SQL semantics make applicability conditions
tricky

O Transformations must be cost based

4/28/99 ©Surajit Chaudhuri 44

Outline

O Preliminaries
O Query Optimization Framework
0O Building Blocks

OEquivalence Transformations

O Statistical Model

OTree-Finder

OTuning Optimizers
O Active Areas of Research
w2809 | Conclusion ©Surajit Chaudhuri 45

Cost Estimation

O Cost of an operator is a function of statistical
properties of input streams

O For every operator: Register functions that
0 For given statistical parameters of the input data
streams, determine:
[ Cost of the operator node
[ Statistical parameters of the output data stream
[J Statistical Parameters: Number of tuples,
Number of distinct values
0 For base tables, this information is computed
by “run statistics”

4/28/99 ©Surajit Chaudhuri 46

Cost Estimates for Scan

OWhat to measure?
0 Throughput
IO cost + w * CPU cost
010 cost = Page Fetches
0 Examples of Scan cost
0S: # of Pages(R)
OCI: # of Pages(R") + # of Index Pages
ONCI: # of Tuples(R) + # of Index Pages
0 Interesting Issue
O Effect of database buffers?

4/28/99 ©Surajit Chaudhuri 47




Cost Estimates for Join

ONested Loop Join
OCost-of(N1) + Size-of(N1) * Scan-
cost(N2)

0Scan-cost(N2) depends on indexes
used

OSort-Merge Join

0Sort(N1) + Sort(N2) + Scan(Templ) +
Scan(Temp2)

4/28/99 ©Surajit Chaudhuri

48

Histograms

O Statistical Descriptor for a stream

al a2 b3 a3 a4 b4

Number of Steps =k
Height of each step = n/k
4/28/99 ©Surajit Chaudhuri 49

Various Histogram
Structures

0 Equi-depth:
O All buckets have same number of values
O Adjacent values co-located in buckets
0 MHIST
O Groups contiguous sets of frequencies
O Minimizes variance of the frequency approximation
O Breakpoints where spreads are maximal
O A General Framework [PIHS96]
O Assign a metric to each value
O How to partition the metric space?
O What information is kept for each bucket?
0 What assumptions are made of values within a bucket?

4/28/99 ©Surajit Chaudhuri

Histograms for Output
Streams

O Filter
OFilter acts as a mask
O Interpolate count in a partial bucket using uniformity
assumption
O Filter with host variables hard to handle
O Filter Expressions:
« F(P1 AND P2) = F(P1)* F(P2)
« F(NOT P1) = 1- F(P1)
0 Join
O“Normalize” two histograms
0“Join” two histograms

0 Shortcoming: Cannot capture correlation

4/28/99 ©Surajit Chaudhuri 51

Histograms on Base
Tables

0 Advantage

[J Optimization aided by available statistics
0 Disadvantage

O Expensive to collect and maintain

O Trend: “Auto-maintain” statistical descriptors
0 Cost of Building: Use sampling?

O Needs “block” sampling for efficiency

O Not effective for number of distinct values

[ How sensitive is optimization to accuracy of
statistics?

4/28/99 ©Surajit Chaudhuri

Outline

O Preliminaries
O Query Optimization Framework
0O Building Blocks

OEquivalence Transformations

O Statistical Model

O Tree-Finder: System R, Volcano,
Starburst

OTuning Optimizers
OActive Areas of Research
AIZS/QD COI’]C| us'on ©Surajit Chaudhuri 53




System R “Tree-Finder”

ONeed to order joins (linearly)
ONaive strategy:

OGenerate all n! permutations of joins
O Prohibitively expensive for a large

number of joins

OOverlapping subproblems

UOlIdeal for dynamic programming

Use of Dynamic Programming

0 Goal: Find the optimal plan for Join(Ry,..R, Ry41)
OFor each Sin {R,,..R,, R,,,} do
OFind Optimal plan for Join(Join(R,,..R,), S)
OEndfor
OPick the plan with the least cost

O Principle of Optimality:

OOptimal plan for a larger expression is derived from
optimal plan of one of its sub-expressions

4/28/99 ©Surajit Chaudhuri 55

4/28/99 ©Surajit Chaudhuri 54
1234
123 124 234 134
12 13 14 23 24 34
1 2 3 4
4/28/99 ©Surajit Chaudhuri 56

Effect of DP on Complexity

0 Enumeration cost drops from O(n!) to O(n2n)
0 May need to store O(2”°n) partial plans

0 Significantly more efficient than the naive
scheme

4/28/99 ©Surajit Chaudhuri 57

Key System-R Tree-Finder
Features

OAvoid Cartesian product
O Defer all Cartesian products as late as possible to avoid
“blow-up”
0 Don't consider (R1 X R2) Join R3 if (R1 Join R3)
Join R2 is feasible

O Recognize “interesting orders” as
violation of principle of optimality:
O Cost-of(SM (R1,R2) ) > Cost-of (NL(R1,R2) )

O But, Cost-of (SM(SM(R1,R2)), R3) may be much less
expensive than other alternatives

4/28/99 ©Surajit Chaudhuri

Handling Interesting
Orders in Tree-Finder

0 Identify all columns that may exploit sorted
order (by examining join predicates)

O Collapse into equivalent groups

O One optimal partial plan for each interesting

order
0 Example:
Rlc=R4d
Rla=R3.a \ R4
R3
Rl.a=R2.b,
R1 R2 Rlc=R2d
4/28/99 ©Surajit Chaudhuri 59




Key ldeas from System R

0 Cost model based on
OAccess methods
0Size and cardinality of relations
OEnumeration exploits
ODynamic programming
0One optimal plan for each equivalent
expression

OViolation of principle of optimality
handled using interesting order

4/28/99 ©Surajit Chaudhuri

Limitations of System R

OLimited Transformations

OJoin ordering and choice of access
methods only

OLimited to single block queries
OWeak Cost Model

4/28/99 ©Surajit Chaudhuri 61

Outline

O Preliminaries
O Query Optimization Framework

O Building Blocks
OEquivalence Transformations
O Statistical Model

O Tree-Finder: System R, Volcano,
Starburst

OTuning Optimizers
OActive Areas of Research
4/28/9D COﬂClUSIOn ©Surajit Chaudhuri




