CSES44
Data Management

Lecture 6: Data Models,
Relational Algebra
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Announcements

* Project teams due Friday
« HW?2 is posted

* Review of “What goes around...” today



Where We Are

* We are done with SQL; Please continue
to read and learn on your own

* Today: data models, and why the
relational model wins; then RA

 Next lectures: DBMS internals

CSE 544 - Fall 2025 3



References

« M. Stonebraker and J. Hellerstein. What

Goes Around Comes Around. In
"Readings in Database Systems” (aka

the Red Book). 4th ed.
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Outline

« Early data models
— IMS
— CODASYL

 Relational Model in some detail

« Data models that followed the relational model
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Early Proposal 1: IMS®
 What s it?

* IBM Information Management System



Early Proposal 1: IMS®

 Hierarchical data model

 Record
— Type: collection of named fields with data types
— Instance: must match type definition
— Each instance has a key
— Record types arranged in a tree

« IMS database is collection of instances of record
types organized in a tree

* IBM Information Management System



What does
this mean?

IMS Example

« Figure 2 from “What goes around comes around”

Supplier (sno,
sname, scity,
sstate)

Part (pno, pname,

psize, pcolor, qty,
price)
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Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)




File on disk:

What does
this mean?

IMS Example

Figure 2 from “What goes around comes around”

Supplier (sno,
sname, scity,

sstate)

Part (pno, pname,
psize, pcolor, qty,

price)

Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)

Supp

Part

Part

Supp

Part

Part
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Figure 2 from “What goes around comes around”

What does
this mean?

IMS Example

Supplier (sno,

sname,
sstate)

sCity,

Part (pno, pname,

Part (pno,
pname, psize,
pcolor)

Supplier (sno,

psize, pcolor, qty, sname, scity,
] i price) sstate, qty, price)
File on disk:
Supp | Part | Part Supp | Part | Part
Part | Supp | Supp Part | Supp | Supp
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IMS Limitations



IMS Limitations

* Tree-structured data model
— Redundant data; existence depends on parent



IMS Limitations

* Tree-structured data model
— Redundant data; existence depends on parent

* Record-at-a-time user interface
— User must specify algorithm to access data



IMS Limitations

Tree-structured data model
— Redundant data; existence depends on parent

Record-at-a-time user interface
— User must specify algorithm to access data

Very limited physical independence
— Phys. organization limits possible operations
— Application programs break if organization changes

Some logical independence but limited



Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

CSE 544 - Fall 2025
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Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?
« Each record has a hierarchical sequence key (HSK)

« HSK defines semantics of commands:
— get_next; get_next_within_parent

« DL/1is a record-at-a-time language
— Programmers construct algorithm, worry about optimization

CSE 544 - Fall 2025
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Data storage

How is data physically stored in IMS?
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Data storage

How is data physically stored in IMS?

* Root records
— Stored sequentially (sorted on key)
— Indexed in a B-tree using the key of the record
— Hashed using the key of the record

* Dependent records
— Physically sequential
— Various forms of pointers
« Selected organizations restrict DL/1 commands

— No updates allowed due to sequential organization
— No “get-next” for hashed organization

18



Data Independence

What is it?

19



Data Independence
What is it?

 Physical data independence: Applications
are insulated from changes in physical
storage details

* Logical data independence: Applications
are insulated from changes to logical
structure of the data

20



Lessons from IMS

* Physical/logical data independence needed

» Tree structure model Is restrictive

« Record-at-a-time programming forces user to
do optimization
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Early Proposal 2: CODASYL

What is it?

CSE 544 - Fall 2025
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Early Proposal 2: CODASYL

What is it?
« Networked data model

* Primitives are also record types with keys
* Record types are organized into network

* Multiple parents; arcs = “sets”

* More flexible than hierarchy

* Record-at-a-time data manipulation language
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CODASYL Example

« Figure 5 from “What goes around comes around”

- Part (pno,
Supplier (sno, prname, psize,
sname, scity, pcolor)
sstate)

Supplie Supplied_by

Supply(qty, price)

CSE 544 - Fall 2025
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CODASYL Limitations

* No data independence: application programs
break if organization changes

« Record-at-a-time: “navigate the hyperspace”

The Programmer§
as Navigator

by Charles W. Bachman
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Outline

« Early data models

 Relational Model in some detail

« Data models that followed the relational model

CSE 544 - Fall 2025
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Relational Model Overview
Ted Codd 1970

 What was the motivation? What is the model?



Relational Model Overview
Ted Codd 1970

Motivation: logical and physical data independence

Store data in a simple data structure (table)
Access data through set-at-a-time language
No need for physical storage proposal

L =
‘=
Relational Database: A Practical Foundation for = - ‘\}
Productivity a8



Great Debate

* Pro relational
— What were the arguments?

» Against relational
— What were the arguments?

« How was it settled?

CSE 544 - Fall 2025
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Great Debate

* Pro relational
— CODASYL is too complex
— No data independence
— Record-at-a-time hard to optimize
— Trees/networks not flexible enough

« Against relational
— COBOL programmers cannot understand relational languages

— Impossible to implement efficiently

« Ultimately settled by the market place
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Outline

« Early data models

 Relational Model in some detail

« Data models that followed the relational model

CSE 544 - Fall 2025
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Other Data Models

Entity-relationship
Object-relational
Semistructured

Key-value pairs

CSE 544 - Fall 2025
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Other Data Models

. . . Abandoned as data model.
Entlty-relatlonshlp@

Object-relational

Semistructured

Key-value pairs
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Other Data Models

Entity-relationship
Object-relational
Semistructured

Key-value pairs
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Other Data Models

Entity-relationship
Object-relational

XML, Json, Protobuf
Semistructu red Nested data; tree-like

Key-value pairs
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Other Data Models

Entity-relationship
Object-relational

Semistructured
NoSQL:

« GET(K), PUT(K,V)
» Great scalability
» Poor functionality

Key-value pairs

CSE 544 - Fall 2025
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Data Independence In
the Relational Model

CSE 544 - Fall 2025
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Data Independence

* Logical data independence:
— SQL views

* Physical data independence:
1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025
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Data Independence

* Logical data independence:

— SQL views

* Physical data independence:
1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025
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SQL Views

« CREATE VIEW RedSuppliers AS ...
 Creates a new relation name

* The content of that relation is defined by
a SELECT-FROM-WHERE query
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor='Red’;
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor='Red’;

RedSuppliers is added to the database schema
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*

FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Red’;

RedSuppliers is added to the database schema
Later we can use it, like any table:

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Blue’;
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*

FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Red’;

RedSuppliers is added to the database schema
Later we can use it, like any table:

What does this
query compute?

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Blue’;
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Discussion

« CREATE VIEW...

— Add view name permanently to the schema
— To delete, type DROP VIEW ...

« CREATE TEMPORAY VIEW...

— Supported in postgres
— Add view name to the schema...
— ...remove at the end of the session

« WITH .... Only local to one query

45



Virtual v.s. Materialized Views

* Virtual view — the default

— The query defining the view is evaluated every
time when it is used

— The data is always up to date!
— But we re-compute it every time: inefficient

* Materialized view
— CREATE MATERALIZED VIEW ...
— Supported by some systems
— Computed only once: efficient

— But may not be up to date 45



Data Independence

* Logical data independence:
— SQL views

* Physical data independence:
1. Declarative query: FO or SQL

2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025
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Data Independence

* Logical data independence:
— SQL views

* Physical data independence: ‘w

1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

Next lectures
CSE 544 - Fall 2025 48



Relational Algebra

CSE 544 - Fall 2025
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Executing SQL Queries

« User writes in SQL

« System: SQL 2| Relational Algebra

« Query Plan: is optimized, the executed
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Relational Algebra

Five operators:

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

 Difference —
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Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

UC=20/\D266(5) =

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

UC=20/\D266(5) =

A B S=
1 10
1 20
2 20

C D
20 66
20 77

C D

10 33
10 44
20 95
20 66
20 77
30 66




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

Op>66(S) =

UC=20/\D266(5) =

A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66
C D
20 66
20 77
C D
10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...
FROM T R=

WHERE condition;

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...
FROM T R
WHERE condition;

C

10

10

20

() = |2

20

30
A B
1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

HC(S) —
Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...

C

10

10

20

20

20

30

FROMT R= | A | B
WHERE condition: 1 ;g
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection
C C
10 10
Hcoll,colz,...(T) 10 or 20
HC(S) — 28 20
Return columns 1, 2, ... 20
from T; all rows | 30 ...set semantics
C D
SELECT T.col1, T.col2,... 10 33
FROMT R= : B S= 10 44
WHERE condition; 1 10 20 | °5
1 20 20 66
2 20 20 77
30 66




Join

Tl X cond TZ

Joins the two tables

SELECT *
FROMT1, T2
WHERE cond:;

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




JO

Tl X cond TZ

Joins the two tables

SELECT *
FROMT1, T2
WHERE cond:;

10

10

33

10

10

44

20

20

95

20

20

66

20

20

77

20

20

55

20

20

66

20

20

77

N
R NB=C S —_
A B
1 10
1 20
2 20

C D
10 33
10 44
20 95
20 66
20 77
30 66




Tl X cond TZ

Joins the two tables

Join

Rx ™yp_ypRYy =

xA|xB|yA|yB
1 10 | 1 10
1 20 | 1 20
1 20| 2 | 20
2 | 20| 1 20
2 |20 2 | 20

Disambiguate
attributes: various
conventions...

SELECT *

FROMT1, T2

WHERE cond; R= A B
1 10
1 20
2 20

C D
10 33
10 44
20 95
20 66
20 77
30 66




Many Variants of Joins

Eg-join: R Xg_S
Theta-join: R Mg crasp<ao S
Cartesian product: RxS

Natural join: next!
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Natural Join

e Joins on common column names
» Retains only one copy of the column

— — RS = A B C
1 | 10 | 33

A B B C //\\ 1 | 10 | 44
1 10 10 33 1 20 55
1 20 10 44 w/1 20 66
2 20 20 55 1 20 77
20 66 2 | 20 | 55

20 " 2 | 20 | 66

30 66 2 | 20 | 77




Quiz Time!

What do these natural joins compute?
e R(A4,B) x S(B,C)
e R(A,B) x S(C,D)

e R(4,B) x S(4,B)

65



Quiz Time!
What do these natural joins compute?
e R(A,B) x S(B,C) -
e R(A,B) x S(C,D)

e R(4,B) x S(4,B)
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Quiz Time!

What do these natural joins compute?

e R(A,B) x S(B,C) -

OR(A,B)NS(C,D) product R X S

e R(4,B) x S(4,B)

67



Quiz Time!

What do these natural joins compute?

e R(4,B) x S(B,C) -
° R(A’ B) D4 S(C’ D) product R X S

e R(A,B) x S(A’B)ﬁtm‘seectio@

68




Even More Joins

Inner joins: > (all variations)
Left outer join: I

Right-, full outer join: b, <

Semi-join: X
. - .. various symbols
Anti-semi-join: >
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Semi-Join

RxS

Tuples in R that join with S

SELECT DISTINCT R.*
FROMR, S
WHERE join-cond;

A B

1 20
1 30
2 40

B

20

30
B C
10 33
10 44
20 95
20 66
20 77
30 66




Anti Semi-Join

RS = R—R XS

Tuples in R that do not join with S

A B

1 20
1 30
2 40

B

40
B C
10 33
10 44
20 95
20 66
20 77
30 66




Finally: Union and Difference

« Set operations:
RuS, R-S

* R, S must have the same schemal

CSE 544 - Fall 2025
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RA by Example

[TpA(R Mp=¢ Op>e6(S))



RA by Example

[TpA(R Mp=¢ Op>e6(S))

1 RA Plan,
A or Query Plan



RA by Example

[TpA(R Mp=¢ Op>e6(S))

15

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

15

10

20

20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

A D
1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77
A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

A D
1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77
A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




Relational Algebra

Five operators:

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

 Difference —
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Relational Algebra

Which operations
Five operators: are monotone’?

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

» Difference —
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Relational Algebra

Which operations
are monotone?

Five operators:
» Selection o

* Projection I1
 Join or cartesian product ~, X Monotone

e Union U

e Difference —
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Extended Relational Algebra

« Group-by and aggregate: y

* Duplicate elimination: )

« Sorting: T
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Group-by and Aggregates

ycoll,colz,...,agg 1,.. (T)

S) =
Standard group-by: chsum(D)( )

SELECT col1,...,agg1(..),agg2(..)
FROM T
GROUP-BY condition;

C D

10 77
20 196
30 66
C D

10 33
10 44
20 95
20 66
20 77
30 66




Translation

Every SQL query can be translated into
an expression in the Extended RA

CSE 544 - Fall 2025
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Product (pid, name, price)
Purchase (pid, cid, store)

Customer (cid, name, city) SQL

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

We say What
we want



Product (pid, name, price)
Purchase (pid, cid, store)

Customer (cid, name, city) to RA

SELECT DISTINCT x.name, z.name

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattl

Specifies
operation

0
FROM Product x, Purchase y, Customer z I
M

e’ X.name,z.name

7~ pid=pid
/ \ Customer

Product

Purchase



Product (pid, name, price)
Purchase(pld cid, store)

CltYOptImlzathn

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and z.city = ‘Seattle’

Push
selections
X.name,z.name down

] — O

. . . id=cid
This is a quick preview! / \
. > . .
More about this pid=pid 5
next lectures 4 city=‘Seattle’
Gprice>100
/ Customer

Product Purchase



Simple SFW

SELECT a1,a2,...
FROMT1,T2, ...
WHERE condition

SQL to RA

Hal,az,...

Ocondition



SQL to RA

...add GROUP-BY

SELECT a1,a2,...,agg1,agg2 Yai,az2,.,a991,a992

FROMT1. T2, ... |

WHERE condition O y
condition

GROUP BY a1t,a2,... ‘



1_[only—what—we—need

SQL to RA

...add HAVING O-cond|ition2

SELECT a1,a2,...,agg1,agg2 Yai,a2,..agg1,agg2.a9g3,..
FROMT1. T2, ... |
WHERE condition1

Both HAVING and
WHERE use o

Ocondition1

GROUP BY a1t,a2,... ‘
HAVING condition2




SQL to RA

» SQL queries without subqueries are
straightforward to translate

* Subqgueries may need to be flattened,
then translated to SQL -- next

CSE 544 - Fall 2025
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

WITH Tmp AS ( .
SELECT DISTINCT z.pno, z.psize Yavg (psize)
FROM Supplier x, Supply vy, Part z ‘
WHERE x.scity = ‘Seattle’
and x.sno=y.sno and y.pno=z.pno)
SELECT avg(psize) ‘
FROM Tmp;

Duplicate
elimination

Hzpnazpﬂze

Dqy.pno=z.pno

/ Nx.sno=y.sno \ Part z

Supplier x Supply y



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Find all suppliers in ‘WA
that supply only parts
under $100

CSE 544 - Fall 2025
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Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)

Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and not exists
(SELECT *
FROM Supply y

Find all suppliers in ‘WA
that supply only parts
under $100

WHERE x.sno = y.sno
and y.price > 100)

CSE 544 - Fall 2025
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries
SELECT x.sno Find all suppliers in ‘WA
FROM Supplier x that supply only parts
WHERE x.sstate = ‘WA’ under $100
and not exists
(SELECT *

FROM Supply y
WHERE x.sno =ysno | Iransiateto RA
and y.price > 100)

CSE 544 - Fall 2025
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA

and not exists

(SELECT *
FROM Supply y
WHERE x.sno = y.sno

and y.price > 100)

CSE 544 - Fall 2025
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’
and not exists

(SELECT * s .

FROM Supply y x.sstate="WA 'A—3(...)

WHERE x.5n0 = y.sno \ \
and y.price > 100)

Supplier x Supply v
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno
FROM Supplier x

WHERE x.sstate = ‘WA
and not exists
(SELECT * s o
FROM Supply y x.sstate="WA 'A—3(...)
WHERE x.5n0 = y.sno \ \
and y.price > 100) Supplier x Supply v
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Need to unnest
SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA
and not exists
(SELECT * s o
FROM Supply y x.sstate="WA 'A—3(...)
WHERE x.5n0 = y.sno \ \
and y.price > 100) Supplier x Supply v
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Need to unnest

Correlation !

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and not exists
(SELECT *
FROM Supply
WHERE x.sno = y.sno
and y.price > 100)

CSE 544 - Fall 2025 100



Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA

and not exists

(SELECT *
FROM Supply y
WHERE x.sno = y.sno

and y.price > 100)

De-Correlation

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and x.sno not in
(SELECT y.sno
FROM Supply y

WHERE y.price > 100)
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Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

(SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA)
EXCEPT

(SELECT y.sno

FROM Supply y

WHERE vy.price > 100)

EXCEPT = set difference

Un-nest

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and x.sno not in
(SELECT y.sno
FROM Supply y
WHERE y.price > 100)
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Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

(SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA)
EXCEPT

(SELECT y.sno

FROM Supply y

WHERE vy.price > 100)

CSE 544 -

Finally...
l_[x.sno Hysno
Ox sstate="WA' Oy price>100
Supplier x Supply y
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Summary

« User writes in SQL
— Declarative language
— Users say WHAT they want

« System: SQL - Relational Algebra

— Explicit operation order: HOW to compute
— RA expression a.k.a. Query Plan

« Query Plan: is optimized, then
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