CSES44
Data Management

Lecture 6: Data Models,
Relational Algebra

CSE 544 - Fall 2025



Announcements

* Project teams due Friday
« HW?2 is posted

* Review of “What goes around...” today



Where We Are

* We are done with SQL; Please continue
to read and learn on your own

* Today: data models, and why the
relational model wins; then RA

 Next lectures: DBMS internals

CSE 544 - Fall 2025 3



References

« M. Stonebraker and J. Hellerstein. What

Goes Around Comes Around. In
"Readings in Database Systems” (aka

the Red Book). 4th ed.

CSE 544 - Fall 2025



Outline

« Early data models
— IMS
— CODASYL

 Relational Model in some detail

« Data models that followed the relational model

CSE 544 - Fall 2025



Early Proposal 1: IMS®
 What s it?

* IBM Information Management System



Early Proposal 1: IMS®

 Hierarchical data model

 Record
— Type: collection of named fields with data types
— Instance: must match type definition
— Each instance has a key
— Record types arranged in a tree

« IMS database is collection of instances of record
types organized in a tree

* IBM Information Management System



What does
this mean?

IMS Example

« Figure 2 from “What goes around comes around”

Supplier (sno,
sname, scity,
sstate)

Part (pno, pname,

psize, pcolor, qty,
price)

CSE 544 - Fall 2025

Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)




File on disk:

What does
this mean?

IMS Example

Figure 2 from “What goes around comes around”

Supplier (sno,
sname, scity,

sstate)

Part (pno, pname,
psize, pcolor, qty,

price)

Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)

Supp

Part

Part

Supp

Part

Part

CSE 544 - Fall 2025




Figure 2 from “What goes around comes around”

What does
this mean?

IMS Example

Supplier (sno,

sname,
sstate)

sCity,

Part (pno, pname,

Part (pno,
pname, psize,
pcolor)

Supplier (sno,

psize, pcolor, qty, sname, scity,
] i price) sstate, qty, price)
File on disk:
Supp | Part | Part Supp | Part | Part
Part | Supp | Supp Part | Supp | Supp

CSE 544 - Fall 2025

10




IMS Limitations



IMS Limitations

* Tree-structured data model
— Redundant data; existence depends on parent



IMS Limitations

* Tree-structured data model
— Redundant data; existence depends on parent

* Record-at-a-time user interface
— User must specify algorithm to access data



IMS Limitations

Tree-structured data model
— Redundant data; existence depends on parent

Record-at-a-time user interface
— User must specify algorithm to access data

Very limited physical independence
— Phys. organization limits possible operations
— Application programs break if organization changes

Some logical independence but limited



Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

CSE 544 - Fall 2025

15



Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?
« Each record has a hierarchical sequence key (HSK)

« HSK defines semantics of commands:
— get_next; get_next_within_parent

« DL/1is a record-at-a-time language
— Programmers construct algorithm, worry about optimization

CSE 544 - Fall 2025

16



Data storage

How is data physically stored in IMS?

17



Data storage

How is data physically stored in IMS?

* Root records
— Stored sequentially (sorted on key)
— Indexed in a B-tree using the key of the record
— Hashed using the key of the record

* Dependent records
— Physically sequential
— Various forms of pointers
« Selected organizations restrict DL/1 commands

— No updates allowed due to sequential organization
— No “get-next” for hashed organization

18



Data Independence

What is it?

19



Data Independence
What is it?

 Physical data independence: Applications
are insulated from changes in physical
storage details

* Logical data independence: Applications
are insulated from changes to logical
structure of the data

20



Lessons from IMS

* Physical/logical data independence needed

» Tree structure model Is restrictive

« Record-at-a-time programming forces user to
do optimization

CSE 544 - Fall 2025 21



Early Proposal 2: CODASYL

What is it?

CSE 544 - Fall 2025

22



Early Proposal 2: CODASYL

What is it?
« Networked data model

* Primitives are also record types with keys
* Record types are organized into network

* Multiple parents; arcs = “sets”

* More flexible than hierarchy

* Record-at-a-time data manipulation language

CSE 544 - Fall 2025 23



CODASYL Example

« Figure 5 from “What goes around comes around”

- Part (pno,
Supplier (sno, prname, psize,
sname, scity, pcolor)
sstate)

Supplie Supplied_by

Supply(qty, price)

CSE 544 - Fall 2025

24



CODASYL Limitations

* No data independence: application programs
break if organization changes

« Record-at-a-time: “navigate the hyperspace”

The Programmer§
as Navigator

by Charles W. Bachman

25



Outline

« Early data models

 Relational Model in some detail

« Data models that followed the relational model

CSE 544 - Fall 2025

26



Relational Model Overview
Ted Codd 1970

 What was the motivation? What is the model?



Relational Model Overview
Ted Codd 1970

Motivation: logical and physical data independence

Store data in a simple data structure (table)
Access data through set-at-a-time language
No need for physical storage proposal

L =
‘=
Relational Database: A Practical Foundation for = - ‘\}
Productivity a8



Great Debate

* Pro relational
— What were the arguments?

» Against relational
— What were the arguments?

« How was it settled?

CSE 544 - Fall 2025

29



Great Debate

* Pro relational
— CODASYL is too complex
— No data independence
— Record-at-a-time hard to optimize
— Trees/networks not flexible enough

« Against relational
— COBOL programmers cannot understand relational languages

— Impossible to implement efficiently

« Ultimately settled by the market place

CSE 544 - Fall 2025



Outline

« Early data models

 Relational Model in some detail

« Data models that followed the relational model

CSE 544 - Fall 2025

31




Other Data Models

Entity-relationship
Object-relational
Semistructured

Key-value pairs

CSE 544 - Fall 2025

32



Other Data Models

. . . Abandoned as data model.
Entlty-relatlonshlp@

Object-relational

Semistructured

Key-value pairs

CSE 544 - Fall 2025 33



Other Data Models

Entity-relationship
Object-relational
Semistructured

Key-value pairs

CSE 544 - Fall 2025

34



Other Data Models

Entity-relationship
Object-relational

XML, Json, Protobuf
Semistructu red Nested data; tree-like

Key-value pairs

CSE 544 - Fall 2025 35



Other Data Models

Entity-relationship
Object-relational

Semistructured
NoSQL:

« GET(K), PUT(K,V)
» Great scalability
» Poor functionality

Key-value pairs

CSE 544 - Fall 2025

36



Data Independence In
the Relational Model

CSE 544 - Fall 2025

37



Data Independence

* Logical data independence:
— SQL views

* Physical data independence:
1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025

38



Data Independence

* Logical data independence:

— SQL views

* Physical data independence:
1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025

39



SQL Views

« CREATE VIEW RedSuppliers AS ...
 Creates a new relation name

* The content of that relation is defined by
a SELECT-FROM-WHERE query

CSE 544 - Fall 2025 40



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor='Red’;

CSE 544 - Fall 2025 41



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor='Red’;

RedSuppliers is added to the database schema

CSE 544 - Fall 2025 42



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*

FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Red’;

RedSuppliers is added to the database schema
Later we can use it, like any table:

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Blue’;

CSE 544 - Fall 2025 43



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL Views

CREATE VIEW RedSuppliers AS
SELECT DISTINCT x.*

FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Red’;

RedSuppliers is added to the database schema
Later we can use it, like any table:

What does this
query compute?

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z
WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor="Blue’;

CSE 544 - Fall 2025 44




Discussion

« CREATE VIEW...

— Add view name permanently to the schema
— To delete, type DROP VIEW ...

« CREATE TEMPORAY VIEW...

— Supported in postgres
— Add view name to the schema...
— ...remove at the end of the session

« WITH .... Only local to one query

45



Virtual v.s. Materialized Views

* Virtual view — the default

— The query defining the view is evaluated every
time when it is used

— The data is always up to date!
— But we re-compute it every time: inefficient

* Materialized view
— CREATE MATERALIZED VIEW ...
— Supported by some systems
— Computed only once: efficient

— But may not be up to date 45



Data Independence

* Logical data independence:
— SQL views

* Physical data independence:
1. Declarative query: FO or SQL

2. Query plan: Relational Algebra
3. Query optimization / execution

CSE 544 - Fall 2025

47



Data Independence

* Logical data independence:
— SQL views

* Physical data independence: ‘w

1. Declarative query: FO or SQL
2. Query plan: Relational Algebra
3. Query optimization / execution

Next lectures
CSE 544 - Fall 2025 48



Relational Algebra

CSE 544 - Fall 2025

49



Executing SQL Queries

« User writes in SQL

« System: SQL 2| Relational Algebra

« Query Plan: is optimized, the executed

CSE 544 - Fall 2025 50



Relational Algebra

Five operators:

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

 Difference —

CSE 544 - Fall 2025



Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

UC=20/\D266(5) =

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

UC=20/\D266(5) =

A B S=
1 10
1 20
2 20

C D
20 66
20 77

C D

10 33
10 44
20 95
20 66
20 77
30 66




Selection

Ocondition (T)

Returns tuplesin T
that satisfy the condition

SELECT *
FROM T
WHERE condition;

Op>66(S) =

UC=20/\D266(5) =

A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66
C D
20 66
20 77
C D
10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...
FROM T R=

WHERE condition;

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...
FROM T R
WHERE condition;

C

10

10

20

() = |2

20

30
A B
1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection

Hcoll,colz,...(T)

HC(S) —
Return columns 1, 2, ...
from T: all rows

SELECT T.col1, T.col2,...

C

10

10

20

20

20

30

FROMT R= | A | B
WHERE condition: 1 ;g
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




Projection
C C
10 10
Hcoll,colz,...(T) 10 or 20
HC(S) — 28 20
Return columns 1, 2, ... 20
from T; all rows | 30 ...set semantics
C D
SELECT T.col1, T.col2,... 10 33
FROMT R= : B S= 10 44
WHERE condition; 1 10 20 | °5
1 20 20 66
2 20 20 77
30 66




Join

Tl X cond TZ

Joins the two tables

SELECT *
FROMT1, T2
WHERE cond:;

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




JO

Tl X cond TZ

Joins the two tables

SELECT *
FROMT1, T2
WHERE cond:;

10

10

33

10

10

44

20

20

95

20

20

66

20

20

77

20

20

55

20

20

66

20

20

77

N
R NB=C S —_
A B
1 10
1 20
2 20

C D
10 33
10 44
20 95
20 66
20 77
30 66




Tl X cond TZ

Joins the two tables

Join

Rx ™yp_ypRYy =

xA|xB|yA|yB
1 10 | 1 10
1 20 | 1 20
1 20| 2 | 20
2 | 20| 1 20
2 |20 2 | 20

Disambiguate
attributes: various
conventions...

SELECT *

FROMT1, T2

WHERE cond; R= A B
1 10
1 20
2 20

C D
10 33
10 44
20 95
20 66
20 77
30 66




Many Variants of Joins

Eg-join: R Xg_S
Theta-join: R Mg crasp<ao S
Cartesian product: RxS

Natural join: next!

CSE 544 - Fall 2025 63



Natural Join

e Joins on common column names
» Retains only one copy of the column

— — RS = A B C
1 | 10 | 33

A B B C //\\ 1 | 10 | 44
1 10 10 33 1 20 55
1 20 10 44 w/1 20 66
2 20 20 55 1 20 77
20 66 2 | 20 | 55

20 " 2 | 20 | 66

30 66 2 | 20 | 77




Quiz Time!

What do these natural joins compute?
e R(A4,B) x S(B,C)
e R(A,B) x S(C,D)

e R(4,B) x S(4,B)

65



Quiz Time!
What do these natural joins compute?
e R(A,B) x S(B,C) -
e R(A,B) x S(C,D)

e R(4,B) x S(4,B)

66



Quiz Time!

What do these natural joins compute?

e R(A,B) x S(B,C) -

OR(A,B)NS(C,D) product R X S

e R(4,B) x S(4,B)

67



Quiz Time!

What do these natural joins compute?

e R(4,B) x S(B,C) -
° R(A’ B) D4 S(C’ D) product R X S

e R(A,B) x S(A’B)ﬁtm‘seectio@

68




Even More Joins

Inner joins: > (all variations)
Left outer join: I

Right-, full outer join: b, <

Semi-join: X
. - .. various symbols
Anti-semi-join: >

CSE 544 - Fall 2025 69



Semi-Join

RxS

Tuples in R that join with S

SELECT DISTINCT R.*
FROMR, S
WHERE join-cond;

A B

1 20
1 30
2 40

B

20

30
B C
10 33
10 44
20 95
20 66
20 77
30 66




Anti Semi-Join

RS = R—R XS

Tuples in R that do not join with S

A B

1 20
1 30
2 40

B

40
B C
10 33
10 44
20 95
20 66
20 77
30 66




Finally: Union and Difference

« Set operations:
RuS, R-S

* R, S must have the same schemal

CSE 544 - Fall 2025

72



RA by Example

[TpA(R Mp=¢ Op>e6(S))



RA by Example

[TpA(R Mp=¢ Op>e6(S))

1 RA Plan,
A or Query Plan



RA by Example

[TpA(R Mp=¢ Op>e6(S))

15

A B

1 10
1 20
2 20

C D

10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

15

10

20

20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

A D
1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77
A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




RA by Example

[TpA(R Mp=¢ Op>e6(S))

A D
1 20 20 66
1 20 20 77
2 20 20 66
2 20 20 77
A B S=
1 10
1 20
2 20

C D
20 66
20 77
30 66

C D
10 33
10 44
20 95
20 66
20 77
30 66




Relational Algebra

Five operators:

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

 Difference —

CSE 544 - Fall 2025



Relational Algebra

Which operations
Five operators: are monotone’?

« Selection o

* Projection II

 Join or cartesian product », X
 Union U

» Difference —

CSE 544 - Fall 2025 80



Relational Algebra

Which operations
are monotone?

Five operators:
» Selection o

* Projection I1
 Join or cartesian product ~, X Monotone

e Union U

e Difference —

CSE 544 - Fall 2025 81



Extended Relational Algebra

« Group-by and aggregate: y

* Duplicate elimination: )

« Sorting: T

CSE 544 - Fall 2025 82



Group-by and Aggregates

ycoll,colz,...,agg 1,.. (T)

S) =
Standard group-by: chsum(D)( )

SELECT col1,...,agg1(..),agg2(..)
FROM T
GROUP-BY condition;

C D

10 77
20 196
30 66
C D

10 33
10 44
20 95
20 66
20 77
30 66




Translation

Every SQL query can be translated into
an expression in the Extended RA

CSE 544 - Fall 2025

84



Product (pid, name, price)
Purchase (pid, cid, store)

Customer (cid, name, city) SQL

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

We say What
we want



Product (pid, name, price)
Purchase (pid, cid, store)

Customer (cid, name, city) to RA

SELECT DISTINCT x.name, z.name

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattl

Specifies
operation

0
FROM Product x, Purchase y, Customer z I
M

e’ X.name,z.name

7~ pid=pid
/ \ Customer

Product

Purchase



Product (pid, name, price)
Purchase(pld cid, store)

CltYOptImlzathn

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and z.city = ‘Seattle’

Push
selections
X.name,z.name down

] — O

. . . id=cid
This is a quick preview! / \
. > . .
More about this pid=pid 5
next lectures 4 city=‘Seattle’
Gprice>100
/ Customer

Product Purchase



Simple SFW

SELECT a1,a2,...
FROMT1,T2, ...
WHERE condition

SQL to RA

Hal,az,...

Ocondition



SQL to RA

...add GROUP-BY

SELECT a1,a2,...,agg1,agg2 Yai,az2,.,a991,a992

FROMT1. T2, ... |

WHERE condition O y
condition

GROUP BY a1t,a2,... ‘



1_[only—what—we—need

SQL to RA

...add HAVING O-cond|ition2

SELECT a1,a2,...,agg1,agg2 Yai,a2,..agg1,agg2.a9g3,..
FROMT1. T2, ... |
WHERE condition1

Both HAVING and
WHERE use o

Ocondition1

GROUP BY a1t,a2,... ‘
HAVING condition2




SQL to RA

» SQL queries without subqueries are
straightforward to translate

* Subqgueries may need to be flattened,
then translated to SQL -- next

CSE 544 - Fall 2025

91



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

WITH Tmp AS ( .
SELECT DISTINCT z.pno, z.psize Yavg (psize)
FROM Supplier x, Supply vy, Part z ‘
WHERE x.scity = ‘Seattle’
and x.sno=y.sno and y.pno=z.pno)
SELECT avg(psize) ‘
FROM Tmp;

Duplicate
elimination

Hzpnazpﬂze

Dqy.pno=z.pno

/ Nx.sno=y.sno \ Part z

Supplier x Supply y



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Find all suppliers in ‘WA
that supply only parts
under $100

CSE 544 - Fall 2025

93



Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)

Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and not exists
(SELECT *
FROM Supply y

Find all suppliers in ‘WA
that supply only parts
under $100

WHERE x.sno = y.sno
and y.price > 100)

CSE 544 - Fall 2025

94



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries
SELECT x.sno Find all suppliers in ‘WA
FROM Supplier x that supply only parts
WHERE x.sstate = ‘WA’ under $100
and not exists
(SELECT *

FROM Supply y
WHERE x.sno =ysno | Iransiateto RA
and y.price > 100)

CSE 544 - Fall 2025

95



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA

and not exists

(SELECT *
FROM Supply y
WHERE x.sno = y.sno

and y.price > 100)

CSE 544 - Fall 2025

Supplier x

96



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’
and not exists

(SELECT * s .

FROM Supply y x.sstate="WA 'A—3(...)

WHERE x.5n0 = y.sno \ \
and y.price > 100)

Supplier x Supply v

CSE 544 - Fall 2025 97



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno
FROM Supplier x

WHERE x.sstate = ‘WA
and not exists
(SELECT * s o
FROM Supply y x.sstate="WA 'A—3(...)
WHERE x.5n0 = y.sno \ \
and y.price > 100) Supplier x Supply v

CSE 544 - Fall 2025 98



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Need to unnest
SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA
and not exists
(SELECT * s o
FROM Supply y x.sstate="WA 'A—3(...)
WHERE x.5n0 = y.sno \ \
and y.price > 100) Supplier x Supply v

CSE 544 - Fall 2025 99



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

Need to unnest

Correlation !

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and not exists
(SELECT *
FROM Supply
WHERE x.sno = y.sno
and y.price > 100)

CSE 544 - Fall 2025 100



Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA

and not exists

(SELECT *
FROM Supply y
WHERE x.sno = y.sno

and y.price > 100)

De-Correlation

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and x.sno not in
(SELECT y.sno
FROM Supply y

WHERE y.price > 100)

CSE 544 - Fall 2025 101



Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

(SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA)
EXCEPT

(SELECT y.sno

FROM Supply y

WHERE vy.price > 100)

EXCEPT = set difference

Un-nest

SELECT x.sno
FROM Supplier x
WHERE x.sstate = ‘WA
and x.sno not in
(SELECT y.sno
FROM Supply y
WHERE y.price > 100)

CSE 544 - Fall 2025 102



Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Subqueries

(SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA)
EXCEPT

(SELECT y.sno

FROM Supply y

WHERE vy.price > 100)

CSE 544 -

Finally...
l_[x.sno Hysno
Ox sstate="WA' Oy price>100
Supplier x Supply y
Fall 2025 103



Summary

« User writes in SQL
— Declarative language
— Users say WHAT they want

« System: SQL - Relational Algebra

— Explicit operation order: HOW to compute
— RA expression a.k.a. Query Plan

« Query Plan: is optimized, then

CSE 544 - Fall 2025 @



	Slide 1: CSE544 Data Management
	Slide 2: Announcements
	Slide 3: Where We Are
	Slide 4: References
	Slide 5: Outline
	Slide 6: Early Proposal 1: IMS*
	Slide 7: Early Proposal 1: IMS*
	Slide 8:  IMS Example
	Slide 9:  IMS Example
	Slide 10:  IMS Example
	Slide 11: IMS Limitations
	Slide 12: IMS Limitations
	Slide 13: IMS Limitations
	Slide 14: IMS Limitations
	Slide 15: Data Manipulation Language: DL/1
	Slide 16: Data Manipulation Language: DL/1
	Slide 17: Data storage
	Slide 18: Data storage
	Slide 19: Data Independence
	Slide 20: Data Independence
	Slide 21: Lessons from IMS
	Slide 22: Early Proposal 2: CODASYL
	Slide 23: Early Proposal 2: CODASYL
	Slide 24: CODASYL Example
	Slide 25: CODASYL Limitations
	Slide 26: Outline
	Slide 27: Relational Model Overview
	Slide 28: Relational Model Overview
	Slide 29: Great Debate
	Slide 30: Great Debate
	Slide 31: Outline
	Slide 32: Other Data Models
	Slide 33: Other Data Models
	Slide 34: Other Data Models
	Slide 35: Other Data Models
	Slide 36: Other Data Models
	Slide 37: Data Independence in the Relational Model
	Slide 38: Data Independence
	Slide 39: Data Independence
	Slide 40: SQL Views
	Slide 41: SQL Views
	Slide 42: SQL Views
	Slide 43: SQL Views
	Slide 44: SQL Views
	Slide 45: Discussion
	Slide 46: Virtual v.s. Materialized Views
	Slide 47: Data Independence
	Slide 48: Data Independence
	Slide 49: Relational Algebra
	Slide 50: Executing SQL Queries
	Slide 51: Relational Algebra
	Slide 52: Selection
	Slide 53: Selection
	Slide 54: Selection
	Slide 55: Selection
	Slide 56: Projection
	Slide 57: Projection
	Slide 58: Projection
	Slide 59: Projection
	Slide 60: Join
	Slide 61: Join
	Slide 62: Join
	Slide 63: Many Variants of Joins
	Slide 64: Natural Join
	Slide 65: Quiz Time!
	Slide 66: Quiz Time!
	Slide 67: Quiz Time!
	Slide 68: Quiz Time!
	Slide 69: Even More Joins
	Slide 70: Semi-Join
	Slide 71: Anti Semi-Join
	Slide 72: Finally: Union and Difference
	Slide 73: RA by Example
	Slide 74: RA by Example
	Slide 75: RA by Example
	Slide 76: RA by Example
	Slide 77: RA by Example
	Slide 78: RA by Example
	Slide 79: Relational Algebra
	Slide 80: Relational Algebra
	Slide 81: Relational Algebra
	Slide 82: Extended Relational Algebra
	Slide 83: Group-by and Aggregates
	Slide 84: Translation
	Slide 85: SQL…
	Slide 86: …to RA
	Slide 87: Optimization
	Slide 88: SQL to RA
	Slide 89: SQL to RA
	Slide 90: SQL to RA
	Slide 91: SQL to RA
	Slide 92: Subqueries
	Slide 93: Subqueries
	Slide 94: Subqueries
	Slide 95: Subqueries
	Slide 96: Subqueries
	Slide 97: Subqueries
	Slide 98: Subqueries
	Slide 99: Subqueries
	Slide 100: Subqueries
	Slide 101: Subqueries
	Slide 102: Subqueries
	Slide 103: Subqueries
	Slide 104: Summary

