
CSE544

Data Management

Lecture 6: Data Models,

Relational Algebra

CSE 544 - Fall 2025 1

Announcements

• Project teams due Friday

• HW2 is posted

• Review of “What goes around…” today

2

Where We Are

• We are done with SQL; Please continue

to read and learn on your own

• Today: data models, and why the

relational model wins; then RA

• Next lectures: DBMS internals

CSE 544 - Fall 2025 3

References

• M. Stonebraker and J. Hellerstein. What

Goes Around Comes Around. In

"Readings in Database Systems" (aka

the Red Book). 4th ed.

CSE 544 - Fall 2025 4

Outline
• Early data models

– IMS

– CODASYL

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Fall 2025 5

Early Proposal 1: IMS*

• What is it?

6
* IBM Information Management System

Early Proposal 1: IMS*

• Hierarchical data model

• Record

– Type: collection of named fields with data types

– Instance: must match type definition

– Each instance has a key

– Record types arranged in a tree

• IMS database is collection of instances of record

types organized in a tree
7

* IBM Information Management System

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Fall 2025 8

What does

this mean?

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Fall 2025 9

What does

this mean?

Supp Part Part … Supp Part Part … …

File on disk:

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Fall 2025 10

What does

this mean?

Supp Part Part … Supp Part Part … …

File on disk:

Part Supp Supp … Part Supp Supp … …

IMS Limitations

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data

• Very limited physical independence

– Phys. organization limits possible operations

– Application programs break if organization changes

• Some logical independence but limited

Data Manipulation Language:

DL/1
How does a programmer retrieve data in IMS?

CSE 544 - Fall 2025 15

Data Manipulation Language:

DL/1
How does a programmer retrieve data in IMS?

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:

– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language

– Programmers construct algorithm, worry about optimization

CSE 544 - Fall 2025 16

Data storage

How is data physically stored in IMS?

17

Data storage

How is data physically stored in IMS?

• Root records
– Stored sequentially (sorted on key)

– Indexed in a B-tree using the key of the record

– Hashed using the key of the record

• Dependent records
– Physically sequential

– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization

– No “get-next” for hashed organization
18

Data Independence

What is it?

19

Data Independence

What is it?

• Physical data independence: Applications

are insulated from changes in physical

storage details

• Logical data independence: Applications

are insulated from changes to logical

structure of the data
20

Lessons from IMS

• Physical/logical data independence needed

• Tree structure model is restrictive

• Record-at-a-time programming forces user to

do optimization

CSE 544 - Fall 2025 21

Early Proposal 2: CODASYL

What is it?

CSE 544 - Fall 2025 22

Early Proposal 2: CODASYL

What is it?

• Networked data model

• Primitives are also record types with keys

• Record types are organized into network

• Multiple parents; arcs = “sets”

• More flexible than hierarchy

• Record-at-a-time data manipulation language

CSE 544 - Fall 2025 23

CODASYL Example

• Figure 5 from “What goes around comes around”

CSE 544 - Fall 2025 24

CODASYL Limitations

• No data independence: application programs

break if organization changes

• Record-at-a-time: “navigate the hyperspace”

CSE 544 - Fall 2025 25

Outline
• Early data models

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Fall 2025 26

Relational Model Overview
Ted Codd 1970

• What was the motivation? What is the model?

Relational Model Overview
Ted Codd 1970

• Motivation: logical and physical data independence

• Store data in a simple data structure (table)

• Access data through set-at-a-time language

• No need for physical storage proposal

Great Debate

• Pro relational

– What were the arguments?

• Against relational

– What were the arguments?

• How was it settled?

CSE 544 - Fall 2025 29

Great Debate

• Pro relational

– CODASYL is too complex

– No data independence

– Record-at-a-time hard to optimize

– Trees/networks not flexible enough

• Against relational

– COBOL programmers cannot understand relational languages

– Impossible to implement efficiently

• Ultimately settled by the market place

CSE 544 - Fall 2025 30

Outline
• Early data models

• Relational Model in some detail

• Data models that followed the relational model

CSE 544 - Fall 2025 31

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs

CSE 544 - Fall 2025 32

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs

CSE 544 - Fall 2025 33

Abandoned as data model.

Adopted for schema design

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs

CSE 544 - Fall 2025 34

E.g. OQL

Obsolete

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs

CSE 544 - Fall 2025 35

XML, Json, Protobuf

Nested data; tree-like

Other Data Models

• Entity-relationship

• Object-relational

• Semistructured

• Key-value pairs

CSE 544 - Fall 2025 36

NoSQL:

• GET(K), PUT(K,V)

• Great scalability

• Poor functionality

Data Independence in

the Relational Model

CSE 544 - Fall 2025 37

Data Independence

• Logical data independence:

– SQL views

• Physical data independence:

1. Declarative query: FO or SQL

2. Query plan: Relational Algebra

3. Query optimization / execution

CSE 544 - Fall 2025 38

Data Independence

• Logical data independence:

– SQL views

• Physical data independence:

1. Declarative query: FO or SQL

2. Query plan: Relational Algebra

3. Query optimization / execution

CSE 544 - Fall 2025 39

SQL Views

• CREATE VIEW RedSuppliers AS …

• Creates a new relation name

• The content of that relation is defined by

a SELECT-FROM-WHERE query

CSE 544 - Fall 2025 40

SQL Views

CSE 544 - Fall 2025 41

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW RedSuppliers AS

 SELECT DISTINCT x.*

 FROM Supplier x, Supply y, Part z

 WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Red’;

SQL Views

CSE 544 - Fall 2025 42

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW RedSuppliers AS

 SELECT DISTINCT x.*

 FROM Supplier x, Supply y, Part z

 WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Red’;

RedSuppliers is added to the database schema

SQL Views

CSE 544 - Fall 2025 43

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW RedSuppliers AS

 SELECT DISTINCT x.*

 FROM Supplier x, Supply y, Part z

 WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Red’;

RedSuppliers is added to the database schema

Later we can use it, like any table:

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z

WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Blue’;

SQL Views

CSE 544 - Fall 2025 44

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW RedSuppliers AS

 SELECT DISTINCT x.*

 FROM Supplier x, Supply y, Part z

 WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Red’;

RedSuppliers is added to the database schema

Later we can use it, like any table:

SELECT DISTINCT x.*

FROM RedSupplier x, Supply y, Part z

WHERE x.sno=y.sno and y.pno=z.pno and z.pcolor=‘Blue’;

What does this

query compute?

Discussion

• CREATE VIEW…

– Add view name permanently to the schema

– To delete, type DROP VIEW …

• CREATE TEMPORAY VIEW…

– Supported in postgres

– Add view name to the schema…

– …remove at the end of the session

• WITH …. Only local to one query
45

Virtual v.s. Materialized Views

• Virtual view – the default

– The query defining the view is evaluated every

time when it is used

– The data is always up to date!

– But we re-compute it every time: inefficient

• Materialized view

– CREATE MATERALIZED VIEW …

– Supported by some systems

– Computed only once: efficient

– But may not be up to date
46

Data Independence

• Logical data independence:

– SQL views

• Physical data independence:

1. Declarative query: FO or SQL

2. Query plan: Relational Algebra

3. Query optimization / execution

CSE 544 - Fall 2025 47

Data Independence

• Logical data independence:

– SQL views

• Physical data independence:

1. Declarative query: FO or SQL

2. Query plan: Relational Algebra

3. Query optimization / execution

CSE 544 - Fall 2025 48

We saw this

Next

Next lectures

Relational Algebra

CSE 544 - Fall 2025 49

Executing SQL Queries

• User writes in SQL

• System: SQL → Relational Algebra

• Query Plan: is optimized, the executed

CSE 544 - Fall 2025 50

Relational Algebra

Five operators:

• Selection 𝜎

• Projection Π

• Join or cartesian product ⋈, ×

• Union ∪

• Difference −

CSE 544 - Fall 2025 51

Selection

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑇)

Returns tuples in T

that satisfy the condition

SELECT *

FROM T

WHERE condition;

Selection

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑇)

Returns tuples in T

that satisfy the condition

SELECT *

FROM T

WHERE condition; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝜎𝐶=20∧𝐷≥66 𝑆 =

Selection

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑇)

Returns tuples in T

that satisfy the condition

SELECT *

FROM T

WHERE condition; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝜎𝐶=20∧𝐷≥66 𝑆 =
C D

20 66

20 77

Selection

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑇)

Returns tuples in T

that satisfy the condition

SELECT *

FROM T

WHERE condition; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝜎𝐷≥66 𝑆 =

C D

20 66

20 77

30 66

𝜎𝐶=20∧𝐷≥66 𝑆 =
C D

20 66

20 77

Projection

Π𝑐𝑜𝑙1,𝑐𝑜𝑙2,…(𝑇)

Return columns 1, 2, …

from T; all rows

SELECT T.col1, T.col2,…

FROM T

WHERE condition;

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

Projection

Π𝑐𝑜𝑙1,𝑐𝑜𝑙2,…(𝑇)

Return columns 1, 2, …

from T; all rows

SELECT T.col1, T.col2,…

FROM T

WHERE condition;

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

Π𝐶 𝑆 =

C

10

10

20

20

20

30

Projection

Π𝑐𝑜𝑙1,𝑐𝑜𝑙2,…(𝑇)

Return columns 1, 2, …

from T; all rows

SELECT T.col1, T.col2,…

FROM T

WHERE condition;

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

Π𝐶 𝑆 =

C

10

10

20

20

20

30

Bag semantics…

Projection

Π𝑐𝑜𝑙1,𝑐𝑜𝑙2,…(𝑇)

Return columns 1, 2, …

from T; all rows

SELECT T.col1, T.col2,…

FROM T

WHERE condition;

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

Π𝐶 𝑆 =

C

10

10

20

20

20

30

or

C

10

20

30

Bag semantics…

…set semantics

Join

𝑇1 ⋈𝑐𝑜𝑛𝑑 𝑇2

Joins the two tables

SELECT *

FROM T1, T2

WHERE cond; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

Join

𝑇1 ⋈𝑐𝑜𝑛𝑑 𝑇2

Joins the two tables

SELECT *

FROM T1, T2

WHERE cond; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝑅 ⋈𝐵=𝐶 𝑆 =

A B C D

1 10 10 33

1 10 10 44

1 20 20 55

1 20 20 66

1 20 20 77

2 20 20 55

2 20 20 66

2 20 20 77

Join

𝑇1 ⋈𝑐𝑜𝑛𝑑 𝑇2

Joins the two tables

SELECT *

FROM T1, T2

WHERE cond; A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝑅 𝑥 ⋈𝑥.𝐵=𝑦.𝐵𝑅 𝑦 =

x.A x.B y.A y.B

1 10 1 10

1 20 1 20

1 20 2 20

2 20 1 20

2 20 2 20
Disambiguate

attributes: various

conventions…

Many Variants of Joins

• Eq-join: 𝑅 ⋈𝐵=𝐶 𝑆

• Theta-join: 𝑅 ⋈𝐵≤𝐶∧𝐴∗𝐷<20 𝑆

• Cartesian product: 𝑅 × 𝑆

• Natural join: next!

CSE 544 - Fall 2025 63

Natural Join

• Joins on common column names

• Retains only one copy of the column

A B

1 10

1 20

2 20

R=

B C

10 33

10 44

20 55

20 66

20 77

30 66

S= 𝑅 ⋈ 𝑆 = A B C

1 10 33

1 10 44

1 20 55

1 20 66

1 20 77

2 20 55

2 20 66

2 20 77

Implicit: R.B=S.B

Quiz Time!

What do these natural joins compute?

• 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

65

Quiz Time!

What do these natural joins compute?

• 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

66

Joins on B=B

Quiz Time!

What do these natural joins compute?

• 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

67

Joins on B=B

Cartesian

product 𝑅 × 𝑆

Quiz Time!

What do these natural joins compute?

• 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

• 𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

68

Joins on B=B

Cartesian

product 𝑅 × 𝑆

Intersection 𝑅 ∩ 𝑆

Even More Joins

• Inner joins: ⋈ (all variations)

• Left outer join: ⟕

• Right-, full outer join: ⟖, ⟗

• Semi-join: ⋉

• Anti-semi-join: ▷

CSE 544 - Fall 2025 69

People use

various symbols

Semi-Join

𝑅 ⋉ 𝑆

Tuples in R that join with S

SELECT DISTINCT R.*

FROM R, S

WHERE join-cond; A B

1 20

1 30

2 40

R=

B C

10 33

10 44

20 55

20 66

20 77

30 66

S=

A B

1 20

1 30

Anti Semi-Join

𝑅▷𝑆 = 𝑅 − 𝑅 ⋉ 𝑆

Tuples in R that do not join with S

A B

1 20

1 30

2 40

R=

B C

10 33

10 44

20 55

20 66

20 77

30 66

S=

A B

2 40

Finally: Union and Difference

• Set operations:

 𝑅 ∪ 𝑆 , 𝑅 − 𝑆

• R, S must have the same schema!

CSE 544 - Fall 2025 72

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

ΠA

⋈𝐵=𝐶

𝑅 𝜎𝐷≥66

𝑆

RA Plan,

or Query Plan

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

ΠA

⋈𝐵=𝐶

𝑅 𝜎𝐷≥66

𝑆

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

ΠA

⋈𝐵=𝐶

𝑅 𝜎𝐷≥66

𝑆

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

C D

20 66

20 77

30 66

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

ΠA

⋈𝐵=𝐶

𝑅 𝜎𝐷≥66

𝑆

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

C D

20 66

20 77

30 66

A B C D

1 20 20 66

1 20 20 77

2 20 20 66

2 20 20 77

RA by Example

ΠA(𝑅 ⋈𝐵=𝐶 𝜎𝐷≥66 𝑆)

ΠA

⋈𝐵=𝐶

𝑅 𝜎𝐷≥66

𝑆

A B

1 10

1 20

2 20

R=

C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

C D

20 66

20 77

30 66

A B C D

1 20 20 66

1 20 20 77

2 20 20 66

2 20 20 77

A

1

2

Final

output

Relational Algebra

Five operators:

• Selection 𝜎

• Projection Π

• Join or cartesian product ⋈, ×

• Union ∪

• Difference −

CSE 544 - Fall 2025 79

Relational Algebra

Five operators:

• Selection 𝜎

• Projection Π

• Join or cartesian product ⋈, ×

• Union ∪

• Difference −

CSE 544 - Fall 2025 80

Which operations

are monotone?

Relational Algebra

Five operators:

• Selection 𝜎

• Projection Π

• Join or cartesian product ⋈, ×

• Union ∪

• Difference −

CSE 544 - Fall 2025 81

Which operations

are monotone?

Monotone

Non-monotone

Extended Relational Algebra

• Group-by and aggregate: 𝛾

• Duplicate elimination: 𝛿

• Sorting: 𝜏

CSE 544 - Fall 2025 82

We only

discuss this

Group-by and Aggregates

𝛾𝑐𝑜𝑙1,𝑐𝑜𝑙2,…,𝑎𝑔𝑔1,…(𝑇)

Standard group-by:

SELECT col1,…,agg1(..),agg2(..)

FROM T

GROUP-BY condition; C D

10 33

10 44

20 55

20 66

20 77

30 66

S=

𝛾𝐶,𝑠𝑢𝑚(𝐷) 𝑆 =
C D

10 77

20 196

30 66

Translation

Every SQL query can be translated into

an expression in the Extended RA

CSE 544 - Fall 2025 84

SQL…

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

We say What

we want

…to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

 x.price > 100 and z.city = ‘Seattle’

Specifies

operation

order

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

Optimization

Product Purchase

pid=pid

city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = z.cid and

 x.price > 100 and z.city = ‘Seattle’

This is a quick preview!

More about this

next lectures

Push

selections

down

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

SQL to RA

Simple SFW

SELECT a1,a2,…

FROM T1, T2, …

WHERE condition

T1 T2

T3
⋈

⋈

Π𝑎1,𝑎2,…

⋮

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

SQL to RA

…add GROUP-BY

SELECT a1,a2,…,agg1,agg2

FROM T1, T2, …

WHERE condition

GROUP BY a1,a2,…

T1 T2

T3⋈

⋈

𝛾𝑎1,𝑎2,…,𝑎𝑔𝑔1,𝑎𝑔𝑔2

⋮

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

SQL to RA

…add HAVING

SELECT a1,a2,…,agg1,agg2

FROM T1, T2, …

WHERE condition1

GROUP BY a1,a2,…

HAVING condition2

T1 T2

T3⋈

⋈

𝛾𝑎1,𝑎2,…,𝑎𝑔𝑔1,𝑎𝑔𝑔2,𝑎𝑔𝑔3,…

⋮

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1

𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2

Π𝑜𝑛𝑙𝑦−𝑤ℎ𝑎𝑡−𝑤𝑒−𝑛𝑒𝑒𝑑

Both HAVING and

WHERE use 𝜎

SQL to RA

• SQL queries without subqueries are

straightforward to translate

• Subqueries may need to be flattened,

then translated to SQL -- next

CSE 544 - Fall 2025 91

Subqueries

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

WITH Tmp AS (

 SELECT DISTINCT z.pno, z.psize

 FROM Supplier x, Supply y, Part z

 WHERE x.scity = ‘Seattle’

 and x.sno=y.sno and y.pno=z.pno)
SELECT avg(psize)

FROM Tmp;

Supplier x Supply y

Part z
⋈𝑥.𝑠𝑛𝑜=𝑦.𝑠𝑛𝑜

⋈𝑦.𝑝𝑛𝑜=𝑧.𝑝𝑛𝑜

Π𝑧.𝑝𝑛𝑜,𝑧.𝑝𝑠𝑖𝑧𝑒

𝛿

𝛾𝑎𝑣𝑔(𝑝𝑠𝑖𝑧𝑒)

Duplicate

elimination

Subqueries

CSE 544 - Fall 2025 93

Find all suppliers in ‘WA’

that supply only parts

under $100

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 94

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100)

Find all suppliers in ‘WA’

that supply only parts

under $100

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 95

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100)

Find all suppliers in ‘WA’

that supply only parts

under $100

Translate to RA

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 96

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100) Supplier x

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 97

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100) Supplier x

σx.sstate=′WA′∧¬∃(…)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Supply y

Subqueries

CSE 544 - Fall 2025 98

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100) Supplier x

σx.sstate=′WA′∧¬∃(…)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Supply y

Totally wrong!!

Subqueries

CSE 544 - Fall 2025 99

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100) Supplier x

σx.sstate=′WA′∧¬∃(…)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Supply y

Totally wrong!!

Need to unnest

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100)

Subqueries

CSE 544 - Fall 2025 100

Correlation !

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Need to unnest

Subqueries

CSE 544 - Fall 2025 101

De-Correlation

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and x.sno not in

 (SELECT y.sno

 FROM Supply y

 WHERE y.price > 100)

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and not exists

 (SELECT *

 FROM Supply y

 WHERE x.sno = y.sno

 and y.price > 100)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 102

Un-nest
(SELECT x.sno

 FROM Supplier x

 WHERE x.sstate = ‘WA’)

 EXCEPT

 (SELECT y.sno

 FROM Supply y

 WHERE y.price > 100)

EXCEPT = set difference

SELECT x.sno

FROM Supplier x

WHERE x.sstate = ‘WA’

 and x.sno not in

 (SELECT y.sno

 FROM Supply y

 WHERE y.price > 100)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Subqueries

CSE 544 - Fall 2025 103

Supply y

σx.sstate=′WA′

Supplier x

Finally…(SELECT x.sno

 FROM Supplier x

 WHERE x.sstate = ‘WA’)

 EXCEPT

 (SELECT y.sno

 FROM Supply y

 WHERE y.price > 100) σy.price>100

Π𝑥.𝑠𝑛𝑜 Π𝑦.𝑠𝑛𝑜

−

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Summary

• User writes in SQL

– Declarative language

– Users say WHAT they want

• System: SQL → Relational Algebra

– Explicit operation order: HOW to compute

– RA expression a.k.a. Query Plan

• Query Plan: is optimized, then executed

CSE 544 - Fall 2025 104Next lectures

	Slide 1: CSE544 Data Management
	Slide 2: Announcements
	Slide 3: Where We Are
	Slide 4: References
	Slide 5: Outline
	Slide 6: Early Proposal 1: IMS*
	Slide 7: Early Proposal 1: IMS*
	Slide 8: IMS Example
	Slide 9: IMS Example
	Slide 10: IMS Example
	Slide 11: IMS Limitations
	Slide 12: IMS Limitations
	Slide 13: IMS Limitations
	Slide 14: IMS Limitations
	Slide 15: Data Manipulation Language: DL/1
	Slide 16: Data Manipulation Language: DL/1
	Slide 17: Data storage
	Slide 18: Data storage
	Slide 19: Data Independence
	Slide 20: Data Independence
	Slide 21: Lessons from IMS
	Slide 22: Early Proposal 2: CODASYL
	Slide 23: Early Proposal 2: CODASYL
	Slide 24: CODASYL Example
	Slide 25: CODASYL Limitations
	Slide 26: Outline
	Slide 27: Relational Model Overview
	Slide 28: Relational Model Overview
	Slide 29: Great Debate
	Slide 30: Great Debate
	Slide 31: Outline
	Slide 32: Other Data Models
	Slide 33: Other Data Models
	Slide 34: Other Data Models
	Slide 35: Other Data Models
	Slide 36: Other Data Models
	Slide 37: Data Independence in the Relational Model
	Slide 38: Data Independence
	Slide 39: Data Independence
	Slide 40: SQL Views
	Slide 41: SQL Views
	Slide 42: SQL Views
	Slide 43: SQL Views
	Slide 44: SQL Views
	Slide 45: Discussion
	Slide 46: Virtual v.s. Materialized Views
	Slide 47: Data Independence
	Slide 48: Data Independence
	Slide 49: Relational Algebra
	Slide 50: Executing SQL Queries
	Slide 51: Relational Algebra
	Slide 52: Selection
	Slide 53: Selection
	Slide 54: Selection
	Slide 55: Selection
	Slide 56: Projection
	Slide 57: Projection
	Slide 58: Projection
	Slide 59: Projection
	Slide 60: Join
	Slide 61: Join
	Slide 62: Join
	Slide 63: Many Variants of Joins
	Slide 64: Natural Join
	Slide 65: Quiz Time!
	Slide 66: Quiz Time!
	Slide 67: Quiz Time!
	Slide 68: Quiz Time!
	Slide 69: Even More Joins
	Slide 70: Semi-Join
	Slide 71: Anti Semi-Join
	Slide 72: Finally: Union and Difference
	Slide 73: RA by Example
	Slide 74: RA by Example
	Slide 75: RA by Example
	Slide 76: RA by Example
	Slide 77: RA by Example
	Slide 78: RA by Example
	Slide 79: Relational Algebra
	Slide 80: Relational Algebra
	Slide 81: Relational Algebra
	Slide 82: Extended Relational Algebra
	Slide 83: Group-by and Aggregates
	Slide 84: Translation
	Slide 85: SQL…
	Slide 86: …to RA
	Slide 87: Optimization
	Slide 88: SQL to RA
	Slide 89: SQL to RA
	Slide 90: SQL to RA
	Slide 91: SQL to RA
	Slide 92: Subqueries
	Slide 93: Subqueries
	Slide 94: Subqueries
	Slide 95: Subqueries
	Slide 96: Subqueries
	Slide 97: Subqueries
	Slide 98: Subqueries
	Slide 99: Subqueries
	Slide 100: Subqueries
	Slide 101: Subqueries
	Slide 102: Subqueries
	Slide 103: Subqueries
	Slide 104: Summary

