CSES44
Data Management

Lectures 2: SQL

CSE 544 - Fall 2025

Relational Data Model: Recap

 Database: collection of relations
R{,R,, .., R,

* Relation (aka Table): set of tuples
R = {ty,t,, ..., t,}

* Tuple (aka row, record):.
t € Domqy X --- X Domy

CSE 544 - Fall 2025

SQL

CSE 544 - Fall 2025

SQL

* Philosophy from the 70’s:
walk-up and read

» Data Definition Language (DDL):

— Quick overview now, then on your own

« Data Manipulation Language (DML)

Relational Data Model

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

|
v

Part(pno.pname,psize,pcolor)

CSE 544 - Fall 2025

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Relational Data Model

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

|
v

Part(pno.pname,psize,pcolor)

CSE 544 - Fall 2025

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Relational Data Model

CSE 544 - Fall 2025

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DDL

CSE 544 - Fall 2025

Supplier (sno,sname,scity,sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int,
sname text,
scity text,
sstate text);

CSE 544 - Fall 2025

Supplier (sno,sname,scity,sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int,
sname text,
scity text,
sstate text);

Creates an empty table:

sSno sname scity

sstate

CSE 544 - Fall 2025

10

Supplier (sno,sname,scity,sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int primary key,

sname text,

scity text,

sstate text);

Creates an empty table:

sn sname scity sstate

CSE 544 - Fall 2025

11

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int primary key,
sname text,
scity text,

sstate text);
—
CREATE TABLE

Part(pno int primary key,
pname text,
psize int,

pcolor text);

CSE 544 - Fall 2025 12

Supplier (sno, sname, scity, sstate)
Supply (sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int primary key,

t

CREATE TABLE
Supply(sno int,

gty int,
price int);

pcolor text);

CSE 544 - Fall 2025 13

Supplier (sno, sname, scity, sstate)
Supply (sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int primary key,

t

CREATE TABLE
Supply(sno int references Supplier,
T— pno int references Part,

gty int,
price int);

pcolor text);

CSE 544 - Fall 2025 14

Supplier (sno, sname, scity, sstate)
Supply (sno,pno,qty,price)
Part (pno,pname,psize,pcolor)

SQL DDL

CREATE TABLE
SUPPLIER(sno int primary key,

t

CREATE TABLE
Supply(sno int references Supplier,
T— pno int references Part,
gty int,
price int,
primary key (sno, pno));

pcolor text);

CSE 544 - Fall 2025 15

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DML

INSERT INTO Supplier VALUES
(11,'ACME','Seattle','WA),

(12,'Walmart’,'Portland’,'OR’),
(13,'Walmart','Seattle’','WA");

CSE 544 - Fall 2025

Or import from
a CSV file, as

in HW1

16

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL DML

INSERT INTO Supplier VALUES Or import from
(11,'ACME','Seattle','WA), a CSVfile, as
(12,'Walmart','Portland','OR’), in HW1
(13,'Walmart','Seattle’','WA");

Supplier @

sSno sname scity sstate
11 ACME Seattle WA
12 Walmart |Portland |OR
13 Walmart | Seattle WA

CSE 544 - Fall 2025 17

Summary So Far

« SQL DDL:
— CREATE TABLE
— DROP TABLE
— ALTER TABLE
— CREATE INDEX (next lecture)

« SQL DML;
— INSERT/DELETE/UPDATE
— SELECT-FROM-WHERE: next!

18

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor

SQL

SELECT ...columns...
FROM ...tables...
WHERE ...condition...

CSE 544 - Fall 2025

19

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)

Part (pno,pname,psize,pcolor

SQL

Supplier

sno |shame scity sstate
11 ACME Seattle WA
12 Walmart |Portland |OR
13 Walmart | Seattle WA

CSE 544 - Fall 2025

20

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

SQL

Return all supplier names

Supplier

sno |shame scity sstate
11 ACME Seattle WA
12 Walmart |Portland |OR
13 Walmart | Seattle WA

CSE 544 - Fall 2025

21

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

SQL

Return all supplier names
SELECT sname
FROM Supplier

sno |shame scity sstate
11 ACME Seattle WA
12 Walmart |Portland |OR
13 Walmart | Seattle WA

CSE 544 - Fall 2025

Supplier

22

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

SQL

Return all supplier names On your
SELECT sname screen.
FROM Supplier

Supplier

sno |shame scity sstate shame

11 ACME Seattle WA j> ACME

12 Walmart |Portland |OR Walmart

13 Walmart | Seattle WA Walmart

CSE 544 - Fall 2025 23

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

SQL

Return all supplier names

This is a bag
SELECT sname
FROM Supplier
Supplier
sno |shame scity sstate shame
11 ACME Seattle WA j> ACME
12 Walmart |Portland |OR Walmart
13 Walmart | Seattle WA Walmart

CSE 544 - Fall 2025 24

Supplier (sno, sname, scity, sstate)

Supply(sno,pno,gty, price)
)

Part (pno,pname,psize,pcolor
Remove duplicates

SELECT DISTINCT sname
FROM Supplier

shame

ACME

Walmart

Walmart

CSE 544 - Fall 2025 25

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor

)
SQL
Remove dup@

SELECT DISTINCT sname
FROM Supplier

shame

ACME

Walmart

CSE 544 - Fall 2025 26

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

SELECT sname
FROM Supplier
SELECT sname, scity
FROM Supplier
SELECT * |
i ?
What do these queries return” FROM Supplier

CSE 544 - Fall 2025

27

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: WHERE

SELECT *
FROM Supplier
WHERE sstate = '"WA

Returns only suppliers in Washington State

CSE 544 - Fall 2025

28

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Discussion

Keywords, table/attribute names are case insensitive:

— SELECT, select, selEcT
— Supplier, SUPPLIER, ...

Strings are case sensitive:
— ‘WA’ different from ‘wa’

WHERE conditions can use complex predicates
— WHERE psize>15 and (pcolor=‘red’ or pcolor=‘blue’)

SQL has lots of built-in predicates; look them up!
— WHERE sname LIKE ‘Y%omart%’

CSE 544 - Fall 2025 29

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

CSE 544 - Fall 2025

30

Supplier (ity, sstate)
Supply (sno, prree=ems=r"orice)

Part (pno,pname,psize,pcolor)

SQL: Joins

Find a n ‘WA’ that supply ‘red’ parts

CSE 544 - Fall 2025

31

Supplier (it
Supply (sno, prree=em=r"nrice

Part (pno,pname,psize,pcolor)

SQL: Joins

Find a hat supply ‘red’ parts

CSE 544 - Fall 2025

32

Supply (sno, pireemem==r="ori ce
Part (pno, pname, psiz

CSE 544 - Fall 2025

33

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT
FROM
WHERE

CSE 544 - Fall 2025

34

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT
FROM Supplier x, Supply y, Part z
WHERE

CSE 544 - Fall 2025

35

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT
FROM Supplier x, Supply y, Part z
WHERE x.sno =y.sno

and y.pno = z.pno

CSE 544 - Fall 2025

36

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT
FROM Supplier x, Supply y, Part z
WHERE x.sno =y.sno

and y.pno = z.pno

and x.sstate = ‘WA

and z.pcolor = ‘red’;

CSE 544 - Fall 2025

37

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT DISTINCT z.pno, z.pname, X.scity
FROM Supplier x, Supply vy, Part z
WHERE x.sno =y.sno

and y.pno = z.pno

and x.sstate = ‘WA

and z.pcolor = ‘red’;

CSE 544 - Fall 2025

38

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part (pno,pname,psize,pcolor)

SQL: Joins

Find all suppliers in ‘WA’ that supply ‘red’ parts

SELECT DISTINCT z.pno, z.pname, X.scity

FROM Suppliecx Supply y, Part z
WHERE/Z”X.sno = y.sno
and = What happens

if we don’t include
these conditions?

and z.pcolor = ‘red’;

CSE 544 - Fall 2025 39

Discussion

* Keys and Foreign Keys:

— Used only to enforce data integrity
— Not used in SELECT-FROM-WHERE

* Tuple variables Supplier x

CSE 544 - Fall 2025

40

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Terminology

o Selection/filter: return a subset of the rows:

— SELECT * FROM Supplier Filtering is
WHERE scity = "Seattlée’ called selection in RA

* Projection: return subset of the columns:
— SELECT DISTINCT scity FROM Supplier;

 Join: refers to combining two or more tables
— SELECT * FROM Supplier, Supply, Part ...

41

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

CSE 544 - Fall 2025

42

Supplier (sno, Sname state)
Supply (sno,pno,gty, price)

Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from

suppliers i and suppliers in

CSE 544 - Fall 2025

43

Supplier (sno Sname state)
Supply (Snty, price)

Part (pno,pname,psize,pcolor)

Self-Joins

Find th@available both from
suppliers i and suppliers in

CSE 544 - Fall 2025

44

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT
FROM Supplier x, Supply y
WHERE

CSE 544 - Fall 2025

45

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT DISTINCT vy.pno
FROM Supplier x, Supply y
WHERE

CSE 544 - Fall 2025

46

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’
and x.scity = ‘Portland’
and X.sno =y.sno

CSE 544 - Fall 2025

47

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’
and x.scity = ‘Portland’
and X.sno =y.sno

This doesn’t work...
Why?

CSE 544 - Fall 2025 48

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’
or x.scity = ‘Portland’)
and X.sno = y.sno

Does this work?

CSE 544 - Fall 2025 49

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’
or x.scity = ‘Portland’)
and X.sno = y.sno

Does this work?

CSE 544 - Fall 2025 50

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno =y1.sno

and x2.scity = ‘Portland’

and x2.sno = y2.sno
and y1.pno = y2.pno

CSE 544 - Fall 2025 51

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’ one in Seattle
and x1.sno = y1.sno the other in Portland
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSE 544 - Fall 2025 52

Supplier (sno, sname, scity, sstate)
Supply(sno,pno,gty, price)
Part_(pno,pname,psize,pcolor)

Self-Joins

Find the Part numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

SELECT DISTINCT y1.pno

FROM Supplier x1, Supplier x2, Supply y1, Supply y2

WHERE x1.scity = ‘Seattle’ one in Seattle
and x1.sno = y1.sno the other in Portland
and x2.scity = ‘Portland’

and x2.sno = y2.sno
and y1.pno = y2.pno

CSE 544 - Fall 2025 53

Recap

Syntax:
« FROM clause: cartesian product
 WHERE clause: filter out

« SELECT clause: says what to return

Semantics: next

CSE 544 - Fall 2025

54

Semantics

CSE 544 - Fall 2025

95

Nested-Loop Semantics of SQL

SELECT a4, a,, ..., a,
FROM R, AS x4, R, AS x,, ..., R, AS X,
WHERE Conditions

CSE 544 - Fall 2025

56

Nested-Loop Semantics of SQL

SELECT a4, a,, ..., a,
FROM R, AS x4, R, AS x,, ..., R, AS X,
WHERE Conditions

Answer = {}
for x, in R, do
for x, in R, do

m"for X, In R, do
if Conditions
then Answer = Answer U {(ay,...,a,)}

return Answer

CSE 544 - Fall 2025 57

Nested-Loop Semantics of SQL

SELECT a4, a,, ..., a,
FROM R, AS x4, R, AS x,, ..., R, AS X,
WHERE Conditions

This is SEMANTICS!
It is NOT how the
engine computes

the query!

Answer = {}
for x, in R, do
for x, in R, do

for x, in R, do
if Conditions
then Answer = Answer U {(ay,...,a,)}
return Answer

CSE 544 - Fall 2025 58

Discussion

» SQL engines choose much more
efficient plans than nested loops

59

Discussion

» SQL engines choose much more
efficient plans than nested loops

* Discuss possible execution plans for:

SELECT DISTINCT z.pno, z.pname, Xx.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno =y.sno

and y.pno = z.pno

and x.sstate = ‘WA

and z.pcolor = ‘red’;

NULLSs

CSE 544 - Fall 2025

61

NULLs in SQL

A NULL value means missing, or
unknown, or undefined, or inapplicable

CSE 544 - Fall 2025

62

Part (pno,pname,price,psize,pcolor)

NULLs in WHERE Clause

Boolean predicate:
« Atomic: Expr1 op Expr2
« AND/OR/NOT

price < 100 and (pcolor="red’ or psize=2)

CSE 544 - Fall 2025

63

Part (pno,pname,price,psize,pcolor)

NULLs in WHERE Clause

Boolean predicate:
« Atomic: Expr1 op Expr2
« AND/OR/NOT

price < 100 and (pcolor="red’ or psize=2)

How do we compute the predicate when values are NULL?

CSE 544 - Fall 2025 64

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

 False=0, Unknown=0.5, True=1

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

 False=0, Unknown=0.5, True=1
- A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

 False=0, Unknown=0.5, True=1
- A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max.

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

 False=0, Unknown=0.5, True=1
- A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max.
« Return only tuples whose condition is True

select *

from Part

where price < 100

and (psize=2 or pcolor="red’)

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

pno | pname | price | psize | pcolor

*
select Pad 500 |13 |blue

from Part Scooter |99 | NULL | NULL

ice <
where price 100 Charger | NULL | NULL | red

and (psize=2 or pcolor="red’)

=T WIN| =

iIPad 50 2 NULL

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

lect * pno | pname | price | psize | pcolor
?e eCP " 1 iPad 500 13 blue @
V;(r)]renre a:ice <100 2 Scooter | 99 NULL | NULL
p. ‘ : 3 Charger | NULL | NULL | red
and (psize=2 or pcolor="red’) _
1 iPad 50 2 NULL

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

N pno | pname | price | psize | pcolor
select .
¢ Part 1 iPad 500 13 blue
V(/?\renre a:ice < 100 2 Scooter | 99 NULL | NULL
p. ‘ : 3 Charger | NULL | NULL | red
and (psize=2 or pcolor="red’) _
1 iPad 50 2 NULL

Part (pno,pname,price,psize,pcolor)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

N pno | pname | price | psize | pcolor
select .
¢ Part 1 iPad 500 13 blue
V(/?\renre a:ice < 100 2 Scooter | 99 NULL | NULL
p. ‘ : 3 Charger | NULL | NULL | red
and (psize=2 or pcolor="red’) _
1 iPad 50 2 NUL

Three-Valued Logic

 False=0, Unknown=0.5, True=1
- A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max.
« Return only tuples whose condition is True

-- problem: (A or not(A)) # true

-- does NOT return all Products
select *

from Product

where (price <= 100) or (price > 100)

Three-Valued Logic

False=0, Unknown=0.5, True=1
A=B(orA>Bor...)

— False or True when both A, B are not null
— Unknown otherwise

AND, OR, NOT are min, max.
Return only tuples whose condition is True

-- problem: (A or not(A)) # true -- returns ALL Products

-- does NOT return all Products select *

select * from Product

from Product where (price <= 100) or (price > 100)
where (price <= 100) or (price > 100) or isNull(price)

Discussion

NULLs: weird behavior
"A Case Against SQL”
Try to avoid NULLs in your database:

CREATE TABLE Product
(... pcolorint NOT NULL...)

But very useful for OUTER JOINS. Next

76

Outer Joins

CSE 544 - Fall 2025

44

Outer Joins

* Ajoin returns tuples that have a match
in both input tables

* An outer joins returns tuples that have a
match in at least one input table

CSE 544 - Fall 2025 78

Product (name, category)

Purchase (prodName,

prodName

is foreign Key

store)

Outer joins

79

Product (name, category)

Purchase (prodName,

prodName

is foreign Key

store)

Outer joins

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products

that never sold

80

Product (name, category)
Purchase (prodName, store)

O uter JO| ns Retrieve all product
is foreign Key names, categories,
and stores where they
were purchased.

Include products
that never sold

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName

Product (name,
Purchase (prodName,

prodName
is foreign Key

category)

store)

Outer joins

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products

that never sold

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName
Product Purchase
Name | Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick | Photo Camera Wiz

Product (name,
Purchase (prodName,

prodName
is foreign Key

category)

store)

Outer joins

Retrieve all product
names, categories,
and stores where they

were purchased.
Include products
that never sold

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName
Product Purchase Output
Name | Category ProdName Store Name Category | Store
Gizmo gadget Gizmo Wiz Gizmo gadget Wiz
Camera Photo Camera Ritz Camera Photo Ritz
OneClick | Photo Camera Wiz Camera Photo Wiz

Product (name,
Purchase (prodName,

prodName
is foreign Key

category)

store)

Outer joins

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products

that never sold

SELECT Xx.name, Xx.category, y.store

FROM Product x LEFT OUTER JOIN Purchase y
ON X.name = y.prodName
Product Purchase Output
Name | Category ProdName Store Name Category | Store
Gizmo gadget Gizmo Wiz Gizmo gadget Wiz
Camera Photo Camera Ritz Camera Photo Ritz
OneClick | Photo Camera Wiz Camera Photo Wiz
Photo NULL

+ OneClick
Now it’s present

Left Outer Join (Details)

select ...

from R left outerjoin S on C1
where C2

1. Compute cross product RxS
2. Filter on C1
3. Add all R records without a match

4. Filter on C2

CSE 544 - Fall 2025

85

Left Outer Join (Details)

select ...
from R left outerjoin S on C1
where C2

Tmp = {}
for xin R do /I left outer join using C1
foryinS do
if C1 then Tmp = Tmp U {(X,y)}

Left Outer Join (Details)

select ...
from R left outerjoin S on C1
where C2

Tmp = {}
for xin R do /I left outer join using C1
foryinS do
if C1 then Tmp = Tmp U {(X,y)}
for xin R do
if not (x in Tmp) then Tmp = Tmp U {(x,NULL)}

Left Outer Join (Details)

select ...
from R left outerjoin S on C1
where C2

Tmp = {}
for xin R do /I left outer join using C1
foryinS do
if C1 then Tmp = Tmp U {(X,y)}
for xin R do
if not (x in Tmp) then Tmp = Tmp U {(x,NULL)}

Answer = {} // apply condition C2
for (x,y) in Tmp if C2 then Answer = Answer U {(X,y)}
return Answer -

Product (name, category)
Purchase (prodName, store, price)

ON v.s. WHERE

* Retrieve all products, together with the
stores where they sold with price < 10

89

Product (name, category)

Purchase (prodName, store, price)

ON v.s. WHERE

prodName
is foreign Key

* Retrieve all products, together with the
stores where they sold with price < 10

* Which query does the job?

SELECT x.name, y.store

FROM Product x

LEFT OUTER JOIN Purchase y

ON X.name = y.prodName
AND y.price < 10

SELECT x.name, y.store
FROM Product x

LEFT OUTER JOIN Purchase y
ON X.name = y.prodName
WHERE y.price < 10

90

Product (name, category)
Purchase (prodName, store, price)

ON v.s. WHERE

* Retrieve all products, together with the
stores where they sold with price < 10

* Which query does the job?

SELECT x.name, y.store SELECT x.name, y.store

FROM Product x FROM Product x

LEFT OUTER JOIN Purchase y LEFT OUTER JOIN Purchase y

ON X.name = y.prodName ON X.name = y.prodName
AND y.price < 10 WHERE y.price < 10

Includes products
that were never
purchased with
price< 10

91

Product (name, category)
Purchase (prodName, store, price)

ON v.s. WHERE

* Retrieve all products, together with the
stores where they sold with price < 10

* Which query does the job?

SELECT x.name, y.store SELECT x.name, y.store

FROM Product x FROM Product x

LEFT OUTER JOIN Purchase y LEFT OUTER JOIN Purchase y

ON X.name = y.prodName ON X.name = y.prodName
AND y.price < 10 WHERE y.price < 10

Includes products
that were never
purchased with
price< 10

Includes products
that were never
purchased,
then checks price <10

92

Product (name, category)

Purchase (prodName, store, price)

ON v.s. WHERE

prodName
is foreign Key

* Retrieve all products, together with the
stores where they sold with price < 10

* Which query does the job?

SELECT x.name, y.store

FROM Product x

LEFT OUTER JOIN Purchase y

ON X.name = y.prodName
AND y.price < 10

SELECT x.name, y.store
FROM Product x

LEFT OUTER JOIN Purchase y
ON X.name = y.prodName

Includes products
that were never
purchased with
price< 10

WHERE y.price < 10

Includes products
that were never
purchased,
then checks price <10

Same as
inner join!

Product (name, category)
Purchase (prodName, store, price)

ON v.s. WHERE

* Retrieve all products, together with the
stores where they sold with price < 10

* Which query does the job”? This one:

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y

ON X.name = y.prodName
AND y.price < 10

Correct query o

Joins: Recap

* Inner join = includes only matching
tuples (i.e. regular join)

* Left outer join = includes everything
from the left

* Right outer join = includes everything
from the right

* Full outer join = includes everything

CSE 544 - Fall 2025 95

Summary so Far

« SELECT-FROM-WHERE

 Joins, self-joins, outer-joins

* NULLs

Next lectures: logical design, more SQL

96

	Slide 1: CSE544 Data Management
	Slide 2: Relational Data Model: Recap
	Slide 3: SQL
	Slide 4: SQL
	Slide 5: Relational Data Model
	Slide 6: Relational Data Model
	Slide 7: Relational Data Model
	Slide 8: SQL DDL
	Slide 9: SQL DDL
	Slide 10: SQL DDL
	Slide 11: SQL DDL
	Slide 12: SQL DDL
	Slide 13: SQL DDL
	Slide 14: SQL DDL
	Slide 15: SQL DDL
	Slide 16: SQL DML
	Slide 17: SQL DML
	Slide 18: Summary So Far
	Slide 19: SQL
	Slide 20: SQL
	Slide 21: SQL
	Slide 22: SQL
	Slide 23: SQL
	Slide 24: SQL
	Slide 25: SQL
	Slide 26: SQL
	Slide 27: SQL
	Slide 28: SQL: WHERE
	Slide 29: Discussion
	Slide 30: SQL: Joins
	Slide 31: SQL: Joins
	Slide 32: SQL: Joins
	Slide 33: SQL: Joins
	Slide 34: SQL: Joins
	Slide 35: SQL: Joins
	Slide 36: SQL: Joins
	Slide 37: SQL: Joins
	Slide 38: SQL: Joins
	Slide 39: SQL: Joins
	Slide 40: Discussion
	Slide 41: Terminology
	Slide 42: Self-Joins
	Slide 43: Self-Joins
	Slide 44: Self-Joins
	Slide 45: Self-Joins
	Slide 46: Self-Joins
	Slide 47: Self-Joins
	Slide 48: Self-Joins
	Slide 49: Self-Joins
	Slide 50: Self-Joins
	Slide 51: Self-Joins
	Slide 52: Self-Joins
	Slide 53: Self-Joins
	Slide 54: Recap
	Slide 55: Semantics
	Slide 56: Nested-Loop Semantics of SQL
	Slide 57: Nested-Loop Semantics of SQL
	Slide 58: Nested-Loop Semantics of SQL
	Slide 59: Discussion
	Slide 60: Discussion
	Slide 61: NULLs
	Slide 62: NULLs in SQL
	Slide 63: NULLs in WHERE Clause
	Slide 64: NULLs in WHERE Clause
	Slide 65: Three-Valued Logic
	Slide 66: Three-Valued Logic
	Slide 67: Three-Valued Logic
	Slide 68: Three-Valued Logic
	Slide 69: Three-Valued Logic
	Slide 70: Three-Valued Logic
	Slide 71: Three-Valued Logic
	Slide 72: Three-Valued Logic
	Slide 73: Three-Valued Logic
	Slide 74: Three-Valued Logic
	Slide 75: Three-Valued Logic
	Slide 76: Discussion
	Slide 77: Outer Joins
	Slide 78: Outer Joins
	Slide 79: Outer joins
	Slide 80: Outer joins
	Slide 81: Outer joins
	Slide 82: Outer joins
	Slide 83: Outer joins
	Slide 84: Outer joins
	Slide 85: Left Outer Join (Details)
	Slide 86: Left Outer Join (Details)
	Slide 87: Left Outer Join (Details)
	Slide 88: Left Outer Join (Details)
	Slide 89: ON v.s. WHERE
	Slide 90: ON v.s. WHERE
	Slide 91: ON v.s. WHERE
	Slide 92: ON v.s. WHERE
	Slide 93: ON v.s. WHERE
	Slide 94: ON v.s. WHERE
	Slide 95: Joins: Recap
	Slide 96: Summary so Far

