CSE544 Data Management

Lectures 15: Transactions

Announcmenets

- HW5 is posted: short, sweet, due on 3/15
- Project milestones due on Friday
- Next Friday 3/12: Project Presentations!
 - 9am 1pm (we may finish a bit earlier)
 - 11 teams
 - Each team gets 10' presentation + 5' discussion
 - Contest for the best presentation (stay tuned!)

Transactions

- We use database transactions everyday
 - Bank \$\$\$ transfers
 - Online shopping
 - Signing up for classes
- Applications that talk to a DB <u>must</u> use transactions in order to keep the database consistent.

Motivating Example

Client 1: UPDATE Budget SET money=money-100 WHERE pid = 1

UPDATE Budget SET money=money+60 WHERE pid = 2

UPDATE Budget SET money=money+40 WHERE pid = 3 Client 2: SELECT sum(money) FROM Budget

Would like to treat each group of instructions as a unit

Transaction

Definition: a transaction is a sequence of updates to the database with the property that either all complete, or none completes (all-or-nothing).

In ad-hoc SQL: each statement = one transaction This is referred to as autocommit March 2, 2021 CSE 544 - Winter 2021 5

Motivating Example

START TRANSACTION UPDATE Budget SET money=money-100 WHERE pid = 1

> UPDATE Budget SET money=money+60 WHERE pid = 2

UPDATE Budget SET money=money+40 WHERE pid = 3 COMMIT (or ROLLBACK) SELECT sum(money) FROM Budget

> With autocommit and without **START TRANSACTION**, each SQL command is a transaction

ROLLBACK

- If the app gets to a place where it can't complete the transaction successfully, it can execute **ROLLBACK**
- This causes the system to "abort" the transaction
 - Database returns to a state without any of the changes made by the transaction
- Several reasons: user, application, system

ACID Properties

- Atomicity: Either all changes performed by transaction occur or none occurs
- **C**onsistency: A transaction as a whole does not violate integrity constraints
- Isolation: Transactions appear to execute one after the other in sequence
- Durability: If a transaction commits, its changes will survive failures

What Could Go Wrong?

Why is it hard to provide ACID properties?

Concurrent operations

- Isolation problems
- We saw one example earlier
- Failures can occur at any time
 - Atomicity and durability problems
 - Later lectures
- Transaction may need to **abort**

Concurrent Execution Problems

- Write-read conflict: dirty read, inconsistent read
 - A transaction reads a value written by another transaction that has not yet committed
- Read-write conflict: unrepeatable read
 - A transaction reads the value of the same object twice.
 Another transaction modifies that value in between the two reads
- Write-write conflict: lost update
 - Two transactions update the value of the same object. The second one to write the value overwrites the first change

Schedules

A <u>schedule</u> is a sequence of interleaved actions from all transactions

A Serial Schedule A = 2 T2 T1 B = 2READ(A, t) t := t+100 WRITE(A, t) READ(B, t)t := t+100 A = 102 WRITE(B,t) B = 102 READ(A,s)s := s*2 WRITE(A,s) READ(B,s) s := s*2 A = 204 WRITE(B,s) B = 204

CSE 544 - Winter 2021

March 2, 2021

14

Serializable Schedule

A schedule is <u>serializable</u> if it is equivalent to a serial schedule

Serializable Schedules

• The role of the scheduler is to ensure that the schedule is serializable

Q: Why not run only serial schedules ? I.e. run one transaction after the other ?

Serializable Schedules

• The role of the scheduler is to ensure that the schedule is serializable

Q: Why not run only serial schedules ? I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases *may* schedule TXNs serially

Still Serializable, but...

T2

T1 READ(A, t) t := t+100WRITE(A, t)

Schedule is serializable because t=t+100 and s=s+200 commute READ(A,s) s := s + 200 WRITE(A,s) READ(B,s) s := s + 200 WRITE(B,s)

READ(B, t) t := t+100 WRITE(B,t)

...we don't expect the scheduler to schedule this

To Be Practical

- Assume worst case updates:
 - Assume cannot commute actions done by transactions
- Therefore, we only care about reads and writes

- Transaction = sequence of R(A)'s and W(A)'s

T₁:
$$r_1(A)$$
; $w_1(A)$; $r_1(B)$; $w_1(B)$
T₂: $r_2(A)$; $w_2(A)$; $r_2(B)$; $w_2(B)$

Conflicts

- Write-Read WR
- Read-Write RW
- Write-Write WW

Conflicts:

Two actions by same transaction T_i :

 $r_i(X); w_i(Y)$

Two writes by T_i, T_j to same element

Read/write by T_i, T_i to same element

March 2, 2021

Definition A schedule is <u>conflict serializable</u> if it can be transformed into a serial schedule by a series of swappings of adjacent non-conflicting actions

- Every conflict-serializable schedule is serializable
- The converse is not true in general

Example:

r₁(A); w₁(A); r₂(A); w₂(A); r₁(B); w₁(B); r₂(B); w₂(B)

Example:

 $r_1(A); w_1(A); r_2(A); w_2(A); r_1(B); w_1(B); r_2(B); w_2(B)$

 $r_1(A); w_1(A); r_1(B); w_1(B); r_2(A); w_2(A); r_2(B); w_2(B)$

Example:

r₁(A); w₁(A); r₂(A); w₂(A); r₁(B); w₁(B); r₂(B); w₂(B)

r₁(A); w₁(A); r₁(B); w₁(B); r₂(A); w₂(A); r₂(B); w₂(B)

Example:

r₁(A); w₁(A); r₂(A); w₂(A); r₁(B); w₁(B); r₂(B); w₂(B)

 $r_1(A); w_1(A); r_2(A); r_1(B); w_2(A); w_1(B); r_2(B); w_2(B)$

r₁(A); w₁(A); r₁(B); w₁(B); r₂(A); w₂(A); r₂(B); w₂(B)

Example:

r₁(A); w₁(A); r₁(B); w₁(B); r₂(A); w₂(A); r₂(B); w₂(B)

Conflict Serializability Example: $r_1(A); w_1(A); r_2(A); w_2(A); r_1(B); w_1(B); r_2(B); w_2(B)$ $r_1(A); w_1(A); r_2(A); r_1(B); w_2(A); w_1(B); r_2(B); w_2(B)$

r₁(A); w₁(A); r₁(B); w₁(B); r₂(A); w₂(A); r₂(B); w₂(B)

 $r_1(A); w_1(A); r_1(B); r_2(A); w_2(A); w_1(B); r_2(B); w_2(B)$

Serializable, Not Conflict-Serializable **T1** READ(A, t) t := t+100 WRITE(A, t) READ(A,s)s := s + 200 WRITE(A,s) READ(B,s) s := s + 200 WRITE(B,s) READ(B, t)t := t+100 WRITE(B,t)

CSE 544 - Winter 2021

Testing for Conflict-Serializability

Precedence graph:

- A node for each transaction T_i,
- An edge from T_i to T_j whenever an action in T_i conflicts with, and comes before an action in T_i
- No edge for actions in the same transaction
- The schedule is serializable iff the precedence graph is acyclic

Example 1

$r_2(A)$; $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

) (2) (3)

) (2) (3)

 $r_2(A)$; $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

) (2) (3)

Example 1

$$r_2(A)$$
 $r_1(B)$
 No edge because no conflict (A != B)

 $r_2(A)$;
 $r_1(B)$;
 $w_2(A)$;
 $r_3(A)$;

 $w_1(B)$;
 $w_3(A)$;
 $r_2(B)$;
 $w_2(B)$;

 $r_2(A)$; $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

2 3

Example 1

$$r_2(A)$$
 $w_2(A)$
 No edge because same txn (2)

 $r_2(A)$
 $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

Example 1

$$r_2(A)$$
 $r_3(A)$?
 $r_2(A)$; $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

Example 1

$$r_2(A)$$
 $w_1(B)$?
 $r_2(A); r_1(B); w_2(A); r_3(A); w_1(B); w_3(A); r_2(B); w_2(B)$

Example 1
$$r_2(A)$$
 $w_3(A)$?

 $r_2(A); r_1(B); w_2(A); r_3(A); w_1(B); w_3(A); r_2(B); w_2(B)$

Example 1

$$r_2(A)$$
 $w_3(A)$
 Edge! Conflict from T2 to T3

 $r_2(A)$
 $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

Example 1

$$r_2(A)$$
 $w_3(A)$
 Edge! Conflict from T2 to T3

 $r_2(A)$; $r_1(B)$; $w_2(A)$; $r_3(A)$; $w_1(B)$; $w_3(A)$; $r_2(B)$; $w_2(B)$

$$1 \qquad 2 \xrightarrow{A} 3$$

 $r_2(A); r_1(B); w_2(A); r_3(A); w_1(B); w_3(A); r_2(B) w_2(B)$

And so on until compared every pair of actions... (1) $(2) \rightarrow (3)$

Example 2

r₂(A); r₁(B); w₂(A); r₂(B); r₃(A); w₁(B); w₃(A); w₂(B)

This schedule is NOT conflict-serializable

 A serializable schedule need not be conflict serializable, even under the "worst case update" assumption

$$w_1(X); w_2(X); w_2(Y); w_1(Y); w_3(Y);$$

Is this schedule conflict-serializable ?

 A serializable schedule need not be conflict serializable, even under the "worst case update" assumption

$$w_1(X); w_2(X); w_2(Y); w_1(Y); w_3(Y);$$

Is this schedule conflict-serializable ?

• A serializable schedule need not be conflict serializable, even under the "worst case update" assumption

$$\begin{array}{c} w_1(X); w_2(X); w_2(Y); w_1(Y); w_3(Y); \\ \hline \\ \text{Lost write} \\ w_1(X); w_1(Y); w_2(X); w_2(Y); w_3(Y); \end{array}$$

Equivalent, but not conflict-equivalent

Serializable, but not conflict serializable 54

Two schedules S, S' are *view equivalent* if:

- If T reads an initial value of A in S, then T reads the initial value of A in S'
- If T reads a value of A written by T' in S, then T reads a value of A written by T' in S'
- If T writes the final value of A in S, then T writes the final value of A in S'

View-Serializability

A schedule is *view serializable* if it is view equivalent to a serial schedule

Remark:

- If a schedule is *conflict serializable*, then it is also *view serializable*
- But not vice versa

Schedules with Aborted Transactions

• When a transaction aborts, the recovery manager undoes its updates

• But some of its updates may have affected other transactions !

Schedules with Aborted Transactions

Abort

Schedules with Aborted Transactions

Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is *recoverable* if:

- It is conflict-serializable, and
- Whenever a transaction T commits, all transactions that have written elements read by T have already committed

Recoverable Schedules

A schedule is *recoverable* if:

- It is conflict-serializable, and
- Whenever a transaction T commits, all transactions that have written elements read by T have already committed

Recoverable Schedules

Cascading Aborts

- If a transaction T aborts, then we need to abort any other transaction T' that has read an element written by T
- A schedule avoids cascading aborts if whenever a transaction reads an element, the transaction that has last written it has already committed.

We base our locking scheme on this rule!

Avoiding Cascading Aborts

Review of Schedules

Serializability

Recoverability

- Serial
- Serializable
- Conflict serializable
- View serializable

- Recoverable
- Avoids cascading deletes