Announcements

• HW4 due on Friday

• Project Milestone due next Friday

• Mini-HW5 will be posted on Saturday
Distributed/Parallel Query Processing

Parallel DBs since the 80s

New, strong technology pulls:

• Multi-core
• Cloud computing
Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
Shared Memory

- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x … 100x processors

- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query

- Easy to use and program
- Expensive to scale
Shared Disk

- All nodes access same disks
- 10x processors
- Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale
Shared Nothing

- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory & disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.
Performance Metrics

Nodes = processors = computers

• **Speedup:**
 – More nodes, same data \rightarrow higher speed

• **Scaleup:**
 – More nodes, more data \rightarrow same speed

Warning: sometimes *Scaleup* is used to mean *Speedup*
Linear v.s. Non-linear Speedup

Speedup

nodes (=P)

×1 ×5 ×10 ×15

Ideal
Linear v.s. Non-linear Scaleup

Batch Scaleup

nodes (=P) AND data size

Ideal

×1 ×5 ×10 ×15
Why Sub-linear?

• **Startup cost**
 – Cost of starting an operation on many nodes

• **Interference**
 – Contention for resources between nodes

• **Skew**
 – Slowest node becomes the bottleneck
Distributed Query Processing Algorithms
Horizontal Data Partitioning

• **Block Partition, a.k.a. Round Robin:**
 – Partition tuples arbitrarily s.t. $\text{size}(R_1) \approx \ldots \approx \text{size}(R_P)$

• **Hash partitioned on attribute A:**
 – Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$

• **Range partitioned on attribute A:**
 – Partition the range of A into $-\infty = v_0 < v_1 < \ldots < v_P = \infty$
 – Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$
Notation

When a relation R is distributed to p servers, we draw the picture like this:

Here R_1 is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_p$$
Uniform Load and Skew

• $|R| = N$ tuples, then $|R_1| + |R_2| + \ldots + |R_p| = N$

• We say the load is uniform when:
 $|R_1| \approx |R_2| \approx \ldots \approx |R_p| \approx N/p$

• Skew means that some load is much larger:
 $\max_i |R_i| >> N/p$

We design algorithms for uniform load, discuss skew later
Parallel Algorithm

- Selection σ
- Join \bowtie
- Group by γ
Parallel Selection

Data: $R(K, A, B, C)$

Query: $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

- Block partitioned:
 - All servers must scan and filter the data

- Hash partitioned:
 - Can have all servers scan and filter the data
 - Or can optimize and only have some servers do work

- Range partitioned
 - Also only some servers need to do the work
Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- Discuss in class how to compute in each case:
 - \(R \) is hash-partitioned on \(A \)
 - \(R \) is block-partitioned or hash-partitioned on \(K \)
Parallel GroupBy

Data: \(R(K, A, B, C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

- Discuss in class how to compute in each case:

 - \(R \) is hash-partitioned on \(A \)
 - Each server \(i \) computes locally \(\gamma_{A,\text{sum}(C)}(R_i) \)

 - \(R \) is block-partitioned or hash-partitioned on \(K \)
 - Need to reshuffle data on \(A \) first (next slide)
 - Then compute locally \(\gamma_{A,\text{sum}(C)}(R_i) \)
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_A, \text{sum}(C)(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

Reshuffle \(R \) on attribute \(A \)
Basic Parallel GroupBy

Data: $R(K, A, B, C)$

Query: $\gamma_{A, \text{sum}(C)}(R)$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

![Diagram of parallel group by](image)
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

Reshuffle \(R \) on attribute \(A \)

CSE 544 - Winter 2021
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

This is done in \textbf{one} communication step

Reshuffle \(R \) on attribute \(A \)
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)

Query: \(\gamma_{A, \text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

This is done in one communication step

Can you think of an optimization?
Basic Parallel GroupBy

Data: $R(K, A, B, C)$
Query: $\gamma_{A, \text{sum}(C)}(R)$
Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

Step 0: [Optimization] each server \(i \) computes local group-by:
\[
T_i = \gamma_{A,\text{sum}(C)}(R_i)
\]
Basic Parallel GroupBy

Data: \(R(K, A, B, C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

Step 0: [Optimization] each server \(i \) computes local group-by:
\[
T_i = \gamma_{A,\text{sum}(C)}(R_i)
\]

Step 1: partitions tuples in \(T_i \) using hash function \(h(A) \):
\[
T_{i,1}, T_{i,2}, \ldots, T_{i,p}
\]
then send fragment \(T_{i,j} \) to server \(j \)
Basic Parallel GroupBy

Data: $R(K, A, B, C)$

Query: $\gamma_{A, \text{sum}(C)}(R)$

Step 0: [Optimization] each server i computes local group-by:

$$T_i = \gamma_{A, \text{sum}(C)}(R_i)$$

Step 1: partitions tuples in T_i using hash function $h(A)$:

$$T_{i,1}, T_{i,2}, \ldots, T_{i,p}$$

then send fragment $T_{i,j}$ to server j

Step 2: receive fragments, union them, then group-by

$$R'_j = T_{1,j} \cup \ldots \cup T_{p,j}$$

$$\text{Answer}_j = \gamma_{A, \text{sum}(C)}(R'_j)$$
Example Query with Group By

```
SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a
```
Example Query with Group By

```
SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a
```
Example Query with Group By

```
SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a
```

\[\gamma_{a, \text{sum}(b) \rightarrow \text{sb}} \]

\[\sigma_{c>0} \]

\[R \]
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a
SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a
\[
\text{SELECT } a, \text{sum}(b) \text{ as sb } \quad \text{FROM R } \quad \text{WHERE } c > 0 \quad \text{GROUP BY } a
\]
Pushing Aggregates Past Union

The rule that allowed us to do early summation is:

\[\gamma_{A,sum(B)\rightarrow C}(R_1 \cup R_2) = \]

\[= \gamma_{A,sum(D)\rightarrow C}(\gamma_{A,sum(B)\rightarrow D}(R_1) \cup \gamma_{A,sum(B)\rightarrow D}(R_2)) \]

For example:

• \(R_1 \) has \(B = x, y, z \); \(R_2 \) has \(B = u, w \)

• Then: \(x + y + z + u + w = (x + y + z) + (u + w) \)
Pushing Aggregates Past Union

Which other rules can we push past union?

• Sum?
• Count?
• Avg?
• Max?
• Median?
Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

<table>
<thead>
<tr>
<th>Distributive</th>
<th>Algebraic</th>
<th>Holistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{sum}(a_1+a_2+\ldots+a_9) = \text{sum}(\text{sum}(a_1+a_2+a_3) + \text{sum}(a_4+a_5+a_6) + \text{sum}(a_7+a_8+a_9)))</td>
<td>(\text{avg}(B) = \frac{\text{sum}(B)}{\text{count}(B)})</td>
<td>median(B)</td>
</tr>
</tbody>
</table>
Speedup and Scaleup

Consider the query $\gamma_{A,\text{sum}(C)}(R)$
Assume the local runtime for group-by is linear $O(|R|)$

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?
Speedup and Scaleup

Consider the query $\gamma_{A,\text{sum}(C)}(R)$
Assume the local runtime for group-by is linear $O(|R|)$

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become $\frac{1}{2}$)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
Speedup and Scaleup

Consider the query $Y_{A,\text{sum(C)}}(R)$
Assume the local runtime for group-by is linear $O(|R|)$

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become $\frac{1}{2}$)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

But only if the data is without skew!
Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
Hash Join: \(R \bowtie_{A=B} S \)

Data: \(R(K1, A, C), S(K2, B, D) \)

Query: \(R \bowtie_{A=B} S \)

Initially, \(R \) and \(S \) are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold \(R \)-chunks, some hold \(S \)-chunks, some hold both
Hash Join: \(R \bowtie_{A=B} S \)

Data: \(R(K_1,A, C), S(K_2, B, D) \)

Query: \(R \bowtie_{A=B} S \)

Reshuffle \(R \) on \(R.A \) and \(S \) on \(S.B \)

Initially, \(R \) and \(S \) are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold \(R \)-chunks, some hold \(S \)-chunks, some hold both
Hash Join: \(R \bowtie_{A=B} S \)

Data: \(R(K1, A, C), S(K2, B, D) \)

Query: \(R \bowtie_{A=B} S \)

Initially, \(R \) and \(S \) are block partitioned.

Notice: they may be stored in DFS (recall MapReduce)

Some servers hold \(R \)-chunks, some hold \(S \)-chunks, some hold both

Reshuffle \(R \) on \(R.A \) and \(S \) on \(S.B \)
Hash Join: $R \bowtie_{A=B} S$

Data: $R(K_1, A, C), S(K_2, B, D)$

Query: $R \bowtie_{A=B} S$

Each server computes the join locally

Reshuffle R on $R.A$ and S on $S.B$

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both
Hash Join: $R \bowtie_{A=B} S$

• Step 1
 – Every server holding any chunk of R partitions its chunk using a hash function $h(t.A)$
 – Every server holding any chunk of S partitions its chunk using a hash function $h(t.B)$

• Step 2:
 – Each server computes the join of its local fragment of R with its local fragment of S
Broadcast Join

• When joining R and S
• If $|R| \gg |S|$
 – Leave R where it is
 – Replicate entire S relation across nodes

• Also called a small join or a broadcast join
Query: \(R \bowtie S \)

Broadcast Join

\[R_1 \quad R_2 \quad R_P \quad S \]

\[\ldots \]
Query: \(R \bowtie S \)

Broadcast Join

Keep R in place

Broadcast S

\(R_1 \quad R_2 \quad R_P \quad S \)
Query: $R \bowtie S$

Broadcast Join

Same place…

Keep R in place

Broadcast S
Query: \(R \bowtie S \)

Broadcast Join

- Keep \(R \) in place
- Same place...

- \(R_1, S \)
- \(R_2, S \)
- \(R_P, S \)
- \(S \)

Broadcast \(S \)

Broadcast \(S \)
Skew-Join

• Hash-join:
 – Both relations are partitioned (good)
 – May have skew (bad)

• Broadcast join
 – One relation must be broadcast (bad)
 – No worry about skew (good)

• Skew join (has other names):
 – Combine both: in class
Example Query Execution

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
    AND o.date = today()
```
Query Execution

Order(oid, item, date), Line(item, …)

Node 1: Scan Order o

Node 2: Select date = today()
 Hash h(o.item)

Node 3: Select date = today()
 Hash h(o.item)

Join o.item = i.item

Node 1: Hash h(o.item)
 Select date = today()
 Scan Order o

Node 2: Hash h(o.item)
 Select date = today()
 Scan Order o

Node 3: Hash h(o.item)
 Select date = today()
 Scan Order o
Query Execution

Order(oid, item, date), Line(item, ...)

Node 1

Node 2

Node 3

hash

h(i.item)

scan

Item i

hash

h(i.item)

scan

Item i

hash

h(i.item)

scan

Item i

join

o.item = i.item

date = today()

Order o

Line i

CSE 544 - Winter 2021
Query Execution

Node 1
join
o.item = i.item
contains all orders and all lines where hash(item) = 1

Node 2
join
o.item = i.item
contains all orders and all lines where hash(item) = 2

Node 3
join
o.item = i.item
contains all orders and all lines where hash(item) = 3

Order(oid, item, date), Line(item, ...)
SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100
\[
\text{… WHERE } R.b = S.c \text{ AND } S.d = T.e \text{ AND } (R.a - T.f) > 100
\]
… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100
... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100
... WHERE \(R.b = S.c \) AND \(S.d = T.e \) AND \((R.a - T.f) > 100 \)
\[\sigma_{R.a - T.f > 100} \]

Broadcasting S and T

\[\sigma_{R.a - T.f > 100} \]

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T
Skew
Skew

• Skew in the input: a data value has much higher frequency than others

• Skew in the output: a server generates many more values than others, e.g. join

• Skew in the computation
Simple Skew Handling Techniques

For range partition:

• Ensure each range gets same number of tuples

• E.g.: \{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2] \text{ and } [3,6]

• Eq-depth v.s. eq-width histograms
Simple Skew Handling Techniques

Skew in the computation:

- Create more partitions than nodes
 - “virtual servers”

- And be smart about scheduling the partitions

- Note: MapReduce uses this technique
Skew for Hash Partition

Relation $R(A,B,C,\ldots)$, we hash-partition on A

If A is a key: we expect a uniform partition

• Some value $A=v$ may occur very many times
 – The “Justin Bieber” effect Jv is called a “heavy hitter”
 – All records with same value v are hashed to the same server i;
 – Partition R_i is much larger than $|R|/p$; skew!!
Skew for Hash Partition

Relation $R(A,B,C,...)$, we hash-partition on A

If A is a key: we expect a uniform partition

If A is not a key:

- Some value $A=v$ may occur very many times
 - The “Justin Bieber” effect 😊
 - v is called a “heavy hitter”
Skew for Hash Partition

Relation $R(A,B,C,...)$, we hash-partition on A

If A is a key: we expect a uniform partition

If A is not a key:

- Some value $A=v$ may occur very many times
 - The “Justin Bieber” effect 😊
 - v is called a “heavy hitter”

- Records with value v hashed to same server i

- Partition R_i is much larger than $|R|/p$; skew!!
Analyzing Heavy Hitters

• We will discuss how to choose the threshold such that a value that occurs more times than the threshold becomes a “heavy hitters”

• This analysis is based on Cernoff bounds, which is a general technique that is useful in statistics and randomized algorithm
Problem Statement

Given: \(N \) data items \(v_1, \ldots, v_N \)

• We hash-partition them to \(P \) nodes
• When is the partitioning uniform?
Problem Statement

Given: N data items v_1, \ldots, v_N

• We hash-partition them to P nodes
• When is the partitioning uniform?

Uniform: each node has $O(N/P)$ items
Problem Statement

Given: \(N \) data items \(v_1, \ldots, v_N \)

- We hash-partition them to \(P \) nodes
- When is the partitioning uniform?

Uniform: each node has \(O(N/P) \) items

Skew: some node has \(>> N/P \) items
Problem Statement

Given: \(N \) data items \(v_1, \ldots, v_N \)
- We hash-partition them to \(P \) nodes
- When is the partitioning uniform?

Uniform: each node has \(O(N/P) \) items

Skew: some node has \(> N/P \) items

1. Due to the hash function \(h \), or
2. Due to skew in the data
Role of the Hash Function

Assume v_1, \ldots, v_N are distinct
Hash function computes $h(v_i) \in \{1, \ldots, P\}$

- If h is **fixed** then we can find bad items that will overload one server; how?
- If h is **random**: balls-in-bins problem; we analyze it using the Cernoff bound
The Cernoff Bound

Bernoulli r.v.: $X_1, \ldots, X_N \in \{0,1\}$
For all i, $\Pr(X_i = 1) = \mu \in (0,1)$
We are interested in $Y = X_1 + X_2 + \cdots + X_N$

Fact: $E[Y] = N\mu$

Theorem (Cernoff bound). If they are iid then:
$$\Pr(Y > (1 + \delta)E[Y]) \leq \exp \left(-\frac{\delta^2}{3}E[Y] \right)$$
Fix one server j;

Define indicator variables:

$$X_1 = [h(v_1) = j], \ldots, X_N = [h(v_N) = j]$$

$$\Pr(X_1 = 1) = \cdots = \Pr(X_N = 1) = 1/P$$

Load of server j:

$$\text{Load}(j) = X_1 + X_2 + \cdots + X_N$$

Expected load:

$$E[\text{Load}(j)] = N/P$$
Role of the Hash Function

Load of server j: \(\text{Load}(j) = X_1 + X_2 + \cdots + X_N \)

Expected load: \(E[\text{Load}(j)] = \frac{N}{P} \)
Role of the Hash Function

Load of server j: $\text{Load}(j) = X_1 + X_2 + \cdots + X_N$

Expected load: $E[\text{Load}(j)] = \frac{N}{P}$

Case 1: v_1, \ldots, v_N distinct; then X_1, \ldots, X_N are iid.
Role of the Hash Function

Load of server j: $\text{Load}(j) = X_1 + X_2 + \cdots + X_N$

Expected load: $\text{E}[\text{Load}(j)] = \frac{N}{P}$

Case 1: v_1, \ldots, v_N distinct; then X_1, \ldots, X_N are iid.

Cernoff: $\text{Pr} \left(\text{Load}(j) > \left(1 + \delta \right) \frac{N}{P} \right) \leq \text{exp} \left(- \frac{\delta^2 N}{3P} \right)$
Role of the Hash Function

Load of server j: \(\text{Load}(j) = X_1 + X_2 + \cdots + X_N \)

Expected load: \(\mathbb{E}[\text{Load}(j)] = \frac{N}{P} \)

Case 1: \(v_1, \ldots, v_N \) distinct; then \(X_1, \ldots, X_N \) are iid.

Cernoff: \(\Pr \left(\text{Load}(j) > (1 + \delta) \frac{N}{P} \right) \leq \exp \left(-\frac{\delta^2 N}{3} \frac{N}{P} \right) \)

Union bound: \(\Pr(\text{Skew}) \leq P \cdot \exp \left(-\frac{\delta^2 N}{3} \frac{N}{P} \right) \)

Why?
Role of the Hash Function

Case 1: v_1, \ldots, v_N distinct:

$$\Pr(Skew) \leq P \cdot \exp\left(-\frac{\delta^2 N}{3P}\right)$$

Discussion: usually $N \gg P$
Role of the Hash Function

Case 1: v_1, \ldots, v_N distinct:

$$\Pr(Skew) \leq P \cdot \exp \left(-\frac{\delta^2 N}{3P} \right)$$

Discussion: usually $N >> P$

- E.g. want load/server < 30% above expected, then $\delta = 0.3$ Assume $N=10^9$ and $P=10^3$
Role of the Hash Function

Case 1: v_1, \ldots, v_N distinct:

$$\Pr(\text{Skew}) \leq P \cdot \exp \left(-\frac{\delta^2 N}{3P} \right)$$

Discussion: usually $N \gg P$

- E.g. want load/server < 30% above expected, then $\delta = 0.3$ Assume $N=10^9$ and $P=10^3$

$$\Pr(\text{Skew}) \leq 1000 \cdot e^{-\frac{0.09}{3} \cdot 10^6} = 1000 \cdot e^{-3 \cdot 10^4} \approx 0$$
Role of the Hash Function

Case 1: \(v_1, \ldots, v_N \) distinct:

\[
\Pr(Skew) \leq P \cdot \exp \left(-\frac{\delta^2 N}{3 P} \right)
\]

Discussion: usually \(N \gg P \)

- Start worrying only when \(N \approx P \ln P \) (why?)
Role of the Hash Function

• Don’t write your own has function!

• Randomize it (how?)

• Make sure $N >> P$ (if not, why parallelize?)

Take away: a good hash function shall not cause skew!
Role of the Data Skew

Case 2: v_1, \ldots, v_N have duplicates
Call v_i a *heavy hitter* if it occurs $\gg \frac{N}{P}$ times
Role of the Data Skew

Case 2: v_1, \ldots, v_N have duplicates

Call v_i a *heavy hitter* if it occurs $>> \frac{N}{P}$ times

Fact if there exists a heavy hitter, then there exists a server j s.t. $\text{Load}(j) \gg \frac{N}{P}$
Role of the Data Skew

Case 2: \(v_1, \ldots, v_N \) have duplicates

Call \(v_i \) a **heavy hitter** if it occurs \(\gg \frac{N}{P} \) times

Fact if there exists a heavy hitter, then there exists a server \(j \) s.t. \(\text{Load}(j) \gg \frac{N}{P} \)

Therefore: \(\Pr(Skew)=1 \)
Role of the Data Skew

Case 2: \(v_1, \ldots, v_N \) have duplicates
Call \(v_i \) a **heavy hitter** if it occurs \(\gg \frac{N}{P} \) times

Fact if there exists a heavy hitter, then there exists a server \(j \) s.t. \(\text{Load}(j) \gg \frac{N}{P} \)
Therefore: \(\Pr(Skew) = 1 \)

No hash function can handle heavy hitters
Role of the Data Skew

Case 3: \(v_1, \ldots, v_N \) have duplicates, no heavy hitters

Assume each value occurs \(\frac{N}{c^P} \) times, for \(c > 1 \)

\[
\underbrace{v_1, v_1, \ldots, v_1}_{\frac{N}{c^P}}, \underbrace{v_2, v_2, \ldots, v_2}_{\frac{N}{c^P}}
\]

\(c^P \) distinct values
Role of the Data Skew

Case 3: v_1, \ldots, v_N have duplicates, no heavy hitters

Assume each value occurs $\frac{N}{cP}$ times, for $c > 1$

$$v_1, v_1, \ldots, v_1, v_2, v_2, \ldots, v_2, \ldots$$

$$X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \ldots$$

cP distinct values
Role of the Data Skew

Case 3: v_1, \ldots, v_N have duplicates, no heavy hitters

Assume each value occurs $\frac{N}{cP}$ times, for $c > 1$

$$v_1, v_1, \ldots, v_1, v_2, v_2, \ldots, v_2, \ldots$$

$$X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \ldots$$

$$Y = \sum_i X_i \quad E[Y] = c \quad Load(j) = Y \frac{N}{cP}$$

$$\Pr(\text{Skew}) \leq P \cdot \Pr(Y > (1 + \delta)E[Y])$$
Role of the Data Skew

Case 3: \(v_1, \ldots, v_N \) have duplicates, no heavy hitters

Assume each value occurs \(\frac{N}{cP} \) times, for \(c > 1 \)

\[
v_1, v_1, \ldots, v_1, v_2, v_2, \ldots, v_2, \ldots
\]

\[
X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \ldots
\]

\[
Y = \sum_i X_i \quad E[Y] = c \quad Load(j) = Y \frac{N}{cP}
\]

\[
Pr(\text{Skew}) \leq P \cdot Pr(Y \geq (1 + \delta)E[Y]) \leq P \cdot \exp\left(-\frac{\delta^2 c}{3}\right)
\]
Role of the Data Skew

Case 3: \(v_1, \ldots, v_N \) have duplicates, no heavy hitters

Assume each value occurs \(\frac{N}{cP} \) times, for \(c > 1 \)

\[
\begin{align*}
v_1, v_1, \ldots, v_1, v_2, v_2, \ldots, v_2, \ldots
\end{align*}
\]

\[
X_1 = [h(v_1) = j], X_2 = [h(v_2) = j], \ldots
\]

\[
Y = \sum_i X_i \quad E[Y] = c \quad Load(j) = Y \frac{N}{cP}
\]

\[
\Pr(\text{Skew}) \leq P \cdot \Pr(Y > (1 + \delta)E[Y]) \leq P \cdot \exp\left(-\frac{\delta^2 c}{3}\right)
\]

Need \(c \geq \ln P \)
Discussion

Use library hash function! Randomize!

• When each value occurs $\leq \frac{N}{P \cdot \ln P}$ times, then $Load \leq (1 + \delta) \frac{N}{P}$ with high probability

• When some value occurs $\gg \frac{N}{P}$ times, the load will be skewed

• Gray area: when values occur $\approx \frac{N}{P}$ times: it can be shown that $Load \approx \frac{N \cdot \ln(P)}{P}$
SkewJoin

Main idea: separate the heavy hitters from the light hitters

- Hash join the light hitters: the partition is uniform because they are light
- Broadcast join the heavy hitters: works because there are very few heavy hitters
SkewJoin: Details

Query: $R \bowtie_{A=B} S$, $R.A$ = foreign key, $S.A$=key
SkewJoin: Details

Query: $R \bowtie_{A=B} S$, $R.A$ = foreign key, $S.A$=key

• Step 1: find the heavy hitters in $R.A$
 – I.e. find the values $v=R.A$ that occur $\geq \frac{N}{P}$ times
 – There are $\leq P$ heavy hitters! Broadcast them
SkewJoin: Details

Query: \(R \bowtie_{A=B} S \), \(R.A = \) foreign key, \(S.A = \) key

- Step 1: find the heavy hitters in \(R.A \)
 - I.e. find the values \(v = R.A \) that occur \(\geq \frac{N}{P} \) times
 - There are \(\leq P \) heavy hitters! Broadcast them

- Step 2: each sever partitions locally:

\[
R = R_{light} \cup R_{heavy}, \quad S = S_{light} \cup S_{heavy}
\]

Notice: \(|S_{heavy}| \leq P \) (i.e. it is small)
Query: $R \bowtie_{A=B} S$, $R.A =$ foreign key, $S.A=$key

- Step 1: find the **heavy hitters** in $R.A$
 - I.e. find the values $v=R.A$ that occur $\geq \frac{N}{P}$ times
 - There are $\leq P$ heavy hitters! Broadcast them

- Step 2: each sever partitions locally:

 $R = R_{light} \cup R_{heavy}$, $S = S_{light} \cup S_{heavy}$

 Notice: $|S_{heavy}| \leq P$ (i.e. it is small)

- Step 3: hash-join $R_{light} \bowtie S_{light}$
SkewJoin: Details

Query: $R \bowtie_{A=B} S$, $R.A =$ foreign key, $S.A =$ key

• Step 1: find the **heavy hitters** in $R.A$
 – I.e. find the values $v=R.A$ that occur $\geq \frac{N}{P}$ times
 – There are $\leq P$ heavy hitters! Broadcast them

• Step 2: each server partitions locally:

 $R = R_{light} \cup R_{heavy}$, $S = S_{light} \cup S_{heavy}$

 Notice: $|S_{heavy}| \leq P$ (i.e. it is small)

• Step 3: hash-join $R_{light} \bowtie S_{light}$

• Step 4: broadcast join $R_{heavy} \bowtie S_{heavy}$
Discussion

• Many distributed query processors do not handle skew well

• (Project idea: how does your favorite engine handle skewed data?)

• In practice, you may need to partition skewed data manually