CSE544
 Data Management

Lectures 13
Parallel Query Processing

Annoucements

- HW4 due on Friday
- Project Milestone due next Friday
- Mini-HW5 will be posted on Saturday

Distributed/Parallel Query Processing

Parallel DBs since the 80s

New, strong technology pulls:

- Multi-core
- Cloud computing

Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing

Shared Memory

- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x ... 100x processors
- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- Easy to use and program
- Expensive to scale

Shared Disk

- All nodes access same disks
- 10x processors
- Example: Oracle
- No more memory contention
- Harder to program
- Still hard to scale

Shared Nothing

Interconnection Network

- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory\&disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

Performance Metrics

Nodes = processors = computers

- Speedup:
- More nodes, same data $\boldsymbol{\rightarrow}$ higher speed
- Scaleup:
- More nodes, more data $\boldsymbol{\rightarrow}$ same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear
 Speedup

Speedup

Linear v.s. Non-linear Scaleup

Why Sub-linear?

- Startup cost
- Cost of starting an operation on many nodes
- Interference
- Contention for resources between nodes
- Skew
- Slowest node becomes the bottleneck

Distributed Query Processing Algorithms

Horizontal Data Partitioning

- Block Partition, a.k.a. Round Robin:
- Partition tuples arbitrarily s.t. $\operatorname{size}\left(R_{1}\right) \approx \ldots \approx \operatorname{size}\left(R_{P}\right)$
- Hash partitioned on attribute A:
- Tuple t goes to chunk i , where $\mathrm{i}=\mathrm{h}(\mathrm{t} . \mathrm{A}) \bmod \mathrm{P}+1$
- Range partitioned on attribute A:
- Partition the range of A into $-\infty=v_{0}<v_{1}<\ldots<v_{P}=\infty$
- Tuple t goes to chunk i, if $v_{i-1}<t . A<v_{i}$

Notation

When a relation R is distributed to p servers, we draw the picture like this:

Here R_{1} is the fragment of R stored on server 1 , etc

$$
R=R_{1} \cup R_{2} \cup \cdots \cup R_{P}
$$

Uniform Load and Skew

- $|R|=N$ tuples, then $\left|R_{1}\right|+\left|R_{2}\right|+\ldots+\left|R_{p}\right|=N$
- We say the load is uniform when:

$$
\left|R_{1}\right| \approx\left|R_{2}\right| \approx \ldots \approx\left|R_{p}\right| \approx N / p
$$

- Skew means that some load is much larger: $\max _{i}\left|R_{i}\right| \gg N / p$

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

- Selection σ
- Join \bowtie
- Group by γ

Parallel Selection

- Block partitioned:
- All servers must scan and filter the data
- Hash partitioned:
- Can have all servers scan and filter the data
- Or can optimize and only have some servers do work
- Range partitioned
- Also only some servers need to do the work

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\quad Y_{A, \text { sum(C) }}(R)$

- Discuss in class how to compute in each case:
- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{V}_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})$

- Discuss in class how to compute in each case:
- R is hash-partitioned on A
- Each server i computes locally $\gamma_{A, \text { sum(}()}\left(R_{i}\right)$
- R is block-partitioned or hash-partitioned on K
- Need to reshuffle data on A first (next slide)
- Then compute locally $\mathrm{Y}_{\mathrm{A}, \text { sum(}(\mathrm{C})}\left(\mathrm{R}_{\mathrm{i}}\right)$

Basic Parallel GroupBy

Data: $\quad \mathrm{R}(\underline{K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C})$
 Query: $\quad \gamma_{A, s u m(C)}(R)$

- R is block-partitioned or hash-partitioned on K

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{Y}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})$

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{Y}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=Y_{A, \operatorname{sum}(C)}\left(R_{i}\right)
$$

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{Y}_{\mathrm{A}, \text { sum(}(\mathrm{C})}(\mathrm{R})$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=V_{A, \text { sum }(C)}\left(R_{i}\right)
$$

Step 1: partitions tuples in T_{i} using hash function $h(A)$: $T_{i, 1}, T_{i, 2}, \ldots, T_{i, p}$
then send fragment $T_{i, j}$ to server j

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $Y_{A, s u m(C)}(R)$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=V_{A, \text { sum }(C)}\left(R_{i}\right)
$$

Step 1: partitions tuples in T_{i} using hash function $h(A)$: $T_{i, 1}, T_{i, 2}, \ldots, T_{i, p}$
then send fragment $T_{i, j}$ to server j
Step 2: receive fragments, union them, then group-by

$$
\begin{aligned}
& R_{j}^{\prime}=T_{1, j} \cup \ldots \cup T_{p, j} \\
& \text { Answer }{ }_{j}=Y_{A, \text { sum(C) }}\left(R_{j}^{\prime}\right)
\end{aligned}
$$

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

$$
\begin{gathered}
\gamma_{\mathrm{a}, \operatorname{sum}(\mathrm{~b}) \rightarrow \mathrm{sb}} \\
\sigma_{\mathrm{c}>0} \\
\mid \\
\mathrm{R}
\end{gathered}
$$

$1 / 3$ of R

Machine 3
$1 / 3$ of R

$1 / 3$ of R

Machine 2
$1 / 3$ of R

Machine 3

Machine 2
$1 / 3$ of R

Machine 3
$1 / 3$ of R

Pushing Aggregates Past Union

The rule that allowed us to do early summation is:
$\gamma_{A, \operatorname{sum}(B) \rightarrow C}\left(R_{1} \cup R_{2}\right)=$

$$
=\gamma_{A, \operatorname{sum}(D) \rightarrow C}\left(\gamma_{A, \operatorname{sum}(B) \rightarrow D}\left(R_{1}\right) \cup \gamma_{A, \operatorname{sum}(B) \rightarrow D}\left(R_{2}\right)\right)
$$

For example:

- R_{1} has $B=x, y, z ; R_{2}$ has $B=u, w$
- Then: $x+y+z+u+w=(x+y+z)+(u+w)$

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?

Distributive	Algebraic	Holistic
sum $\left(a_{1}+a_{2}+\ldots+a_{9}\right)=$ sum $\left(\operatorname{sum}\left(a_{1}+a_{2}+a_{3}\right)+\right.$ sum $\left(a_{4}+a_{5}+a_{6}\right)+$ sum $\left.\left(a_{7}+a_{8}+a_{9}\right)\right)$	avg(B) $)=$ sum(B)/count(B)	median(B)

- Avg?
- Max?
- Median?

Speedup and Scaleup

Consider the query $\gamma_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

- Half (chunk sizes become $1 / 2$)

If we double both P and size of R, what is the runtime?

- Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

- Half (chunk sizes become $1 / 2$)

If we double both P and size of R, what is the runtime?

- Same (chunk sizes remain the same)

Parallel/Distributed Join

Three "algorithms":

- Hash-partitioned
- Broadcast
- Combined: "skew-join" or other names

Hash Join: $R \bowtie_{A=B} S$

Data:
 Query:
 $R \bowtie_{A=B} S$

$\mathrm{R}_{1}, \mathrm{~S}_{1}$
 $\mathrm{R}_{2}, \mathrm{~S}_{2}$
 Initially, R and S are block partitioned.

R_{P}, S_{P}

Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data:
Query:

R(K1,A, C), S(K2, B, D)
$R \bowtie_{A=B} S$

Reshuffle R on R.A and S on S.B
 $\mathrm{R}_{2}, \mathrm{~S}_{2}$ R_{P}, S_{P}

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data:
 Query: R(K1,A, C), S(K2, B, D)
 $R \bowtie_{A=B} S$

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data:
 Query: $R(\underline{K 1}, A, C), S(\underline{K 2}, B, D)$
 $R \bowtie_{A=B} S$

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

- Step 1
- Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
- Every server holding any chunk of S partitions its chunk using a hash function h(t.B)
- Step 2:
- Each server computes the join of its local fragment of R with its local fragment of S

Broadcast Join

- When joining R and S
- If $|R| \gg|S|$
- Leave R where it is
- Replicate entire S relation across nodes
- Also called a small join or a broadcast join

Query: $R \bowtie S$

Broadcast Join

Query: $R \bowtie S$

Broadcast Join

Query: $R \bowtie S$

Broadcast Join

Same place...

Query: $R \bowtie S$

Broadcast Join

Skew-Join

- Hash-join:
- Both relations are partitioned (good)
- May have skew (bad)
- Broadcast join
- One relation must be broadcast (bad)
- No worry about skew (good)
- Skew join (has other names):
- Combine both: in class

Example Query Execution

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
    AND o.date = today()
```


Query Execution

Order(oid, item, date), Line(item, ...)

Query Execution

Example 2

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

Machine 3

Machine 2

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Shuffling intermediate result from $\mathrm{R} \bowtie \mathrm{S}$

Shuffling R, S, and T

Machine 1
$1 / 3$ of R, S, T

Machine 2
$1 / 3$ of R, S, T

Machine 3
$1 / 3$ of R, S, T
... WHERE R.b = S.c AND S.d = T.e AND $($ R. $a-$ T.f $)>100$

Shuffling intermediate result from $R \bowtie S$

Shuffling R, S, and T

Machine 1
$1 / 3$ of R, S, T

Machine 2
$1 / 3$ of R, S, T

Machine 3
$1 / 3$ of R, S, T

Skew

Skew

- Skew in the input: a data value has much higher frequency than others
- Skew in the output: a server generates many more values than others, e.g. join
- Skew in the computation

Simple Skew Handling Techniques

For range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1,1,1,2,3,4,5,6\} \rightarrow[1,2]$ and $[3,6]$
- Eq-depth v.s. eq-width histograms

Simple Skew Handling Techniques

Skew in the computation:

- Create more partitions than nodes
- "virtual servers"
- And be smart about scheduling the partitions
- Note: MapReduce uses this technique

Skew for Hash Partition

Relation $R(A, B, C, \ldots)$, we hash-partition on A If A is a key: we expect a uniform partition

Skew for Hash Partition

Relation $R(A, B, C, \ldots)$, we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:

- Some value $A=v$ may occur very many times
- The "Justin Bieber" effect \odot
- v is called a "heavy hitter"

Skew for Hash Partition

Relation $R(A, B, C, \ldots)$, we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:

- Some value $A=v$ may occur very many times
- The "Justin Bieber" effect ©
- v is called a "heavy hitter"
- Records with value v hashed to same server i
- Partition R_{i} is much larger than $|R| / p$; skew!!

Analyzing Heavy Hitters

- We will discuss how to choose the threshold such that a value that occurs more times than the threshold becomes a "heavy hitters"
- This analysis is based on Cernoff bounds, which is a general technique that is useful in statistics and randomized algorithm

Problem Statement

Given: N data items v_{1}, \ldots, v_{N}

- We hash-partition them to P nodes
- When is the partitioning uniform?

Problem Statement

Given: N data items $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$

- We hash-partition them to P nodes
- When is the partitioning uniform?

Uniform: each node has $O(N / P)$ items

Problem Statement

Given: N data items $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$

- We hash-partition them to P nodes
- When is the partitioning uniform?

Uniform: each node has $\mathrm{O}(\mathrm{N} / \mathrm{P})$ items
Skew: some node has >> N/P items

Problem Statement

Given: N data items v_{1}, \ldots, v_{N}

- We hash-partition them to P nodes
- When is the partitioning uniform?

Uniform: each node has $\mathrm{O}(\mathrm{N} / \mathrm{P})$ items
Skew: some node has >> N/P items

1. Due to the hash function h, or
2. Due to skew in the data

Role of the Hash Function

Assume $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ are distinct
Hash function computes $h\left(v_{i}\right) \in\{1, \ldots, P\}$

- If h is fixed then we can find bad items that will overload one server; how?
- If h is random: balls-in-bins problem; we analyze it using the Cernoff bound

The Cernoff Bound

Bernoulli r.v.: $X_{1}, \ldots, X_{N} \in\{0,1\}$
For all $\mathrm{i}, \operatorname{Pr}\left(X_{i}=1\right)=\mu \in(0,1)$
We are interested in $Y=X_{1}+X_{2}+\cdots+X_{N}$

Fact: $E[Y]=N \mu$
Theorem (Cernoff bound). If they are iid then:

$$
\operatorname{Pr}(Y>(1+\delta) E[Y]) \leq \exp \left(-\frac{\delta^{2}}{3} E[Y]\right)
$$

Role of the Hash Function

Fix one server j;

Define indicator variables:

$$
\begin{aligned}
& X_{1}=\left[h\left(v_{1}\right)=j\right], \ldots, X_{N}=\left[h\left(v_{N}\right)=j\right] \\
& \operatorname{Pr}\left(X_{1}=1\right)=\cdots=\operatorname{Pr}\left(X_{N}=1\right)=1 / P
\end{aligned}
$$

Load of server \mathbf{j} : $\operatorname{Load}(\mathrm{j})=X_{1}+X_{2}+\cdots+X_{N}$
Expected load: $\mathrm{E}[\operatorname{Load}(\mathrm{j})]=N / P$

Role of the Hash Function

Load of server j : $\operatorname{Load}(\mathrm{j})=X_{1}+X_{2}+\cdots+X_{N}$
Expected load: $\quad \mathrm{E}[\operatorname{Load}(\mathrm{j})]=\frac{N}{P}$

Role of the Hash Function

Load of server j : $\operatorname{Load}(\mathrm{j})=X_{1}+X_{2}+\cdots+X_{N}$
Expected load: $\quad \mathrm{E}[\operatorname{Load}(\mathrm{j})]=\frac{N}{P}$

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct; then $X_{1}, \ldots, X N$ are iid.

Role of the Hash Function

Load of server j : $\operatorname{Load}(\mathrm{j})=X_{1}+X_{2}+\cdots+X_{N}$
Expected load: $\quad \mathrm{E}[\operatorname{Load}(\mathrm{j})]=\frac{N}{P}$

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct; then $X_{1}, \ldots, X N$ are iid. Skew at j
Cernoff: $\operatorname{Pr}\left(\operatorname{Load}(\mathrm{j})>(1+\delta) \frac{N}{P}\right) \leq \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)$

Role of the Hash Function

Load of server j : $\operatorname{Load}(\mathrm{j})=X_{1}+X_{2}+\cdots+X_{N}$
Expected load: $\quad \mathrm{E}[\operatorname{Load}(\mathrm{j})]=\frac{N}{P}$

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct; then $X_{1}, \ldots, X N$ are ied. Skew at j
Cernoff: $\operatorname{Pr}\left(\operatorname{Load}(\mathrm{j})>(1+\delta) \frac{N}{P}\right) \leq \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)$
Union bound: $\operatorname{Pr}($ Skew $) \leq P \cdot \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)$
Skew at 1 or at $2 \ldots$ or at P

Role of the Hash Function

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct:

$$
\operatorname{Pr}(\text { Skew }) \leq P \cdot \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)
$$

Discussion: usually N >> P

Role of the Hash Function

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct:

$$
\operatorname{Pr}(\text { Skew }) \leq P \cdot \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)
$$

Discussion: usually $\mathrm{N} \gg \mathrm{P}$

- E.g. want load/server < 30\% above expected, then $\delta=0.3$ Assume $\mathrm{N}=10^{9}$ and $\mathrm{P}=10^{3}$

Role of the Hash Function

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct:

$$
\operatorname{Pr}(\text { Skew }) \leq P \cdot \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)
$$

Discussion: usually N >> P

- E.g. want load/server < 30\% above expected, then $\delta=0.3$ Assume $\mathrm{N}=10^{9}$ and $\mathrm{P}=10^{3}$
$\operatorname{Pr}($ Skew $) \leq 1000 \cdot \mathrm{e}^{-\frac{0.09}{3} 10^{6}}=1000 \cdot e^{-3 \cdot 10^{4}} \approx 0$

Role of the Hash Function

Case 1: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ distinct:

$$
\operatorname{Pr}(\text { Skew }) \leq P \cdot \exp \left(-\frac{\delta^{2}}{3} \frac{N}{P}\right)
$$

Discussion: usually N >> P

- Start worrying only when $N \approx P \ln P$ (why?)

Role of the Hash Function

- Don't write your own has function!
- Randomize it (how?)
- Make sure N >> P (if not, why parallelize?)

Take away: a good hash function shall not cause skew!

Role of the Data Skew

Case 2: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates Call v_{i} a heavy hitter if it occurs >> N/P times

Role of the Data Skew

Case 2: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates
Call v_{i} a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. Load(j) $\gg \frac{N}{P}$

Role of the Data Skew

Case 2: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates Call v_{i} a heavy hitter if it occurs \gg N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. $\operatorname{Load}(\mathrm{j}) \gg \frac{N}{P}$
Therefore: $\operatorname{Pr}($ Skew $)=1$

Role of the Data Skew

Case 2: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates Call v_{i} a heavy hitter if it occurs >> N/P times

Fact if there exists a heavy hitter, then there exists a server j s.t. Load(j) >> $\frac{N}{P}$
Therefore: $\operatorname{Pr}($ Skew $)=1$
No hash function can handle heavy hitters

Role of the Data Skew

Case 3: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates, no heavy hitters
Assume each value occurs $\frac{N}{c P}$ times, for $\mathrm{c}>1$

$$
v_{1}, v_{1}, \ldots, v_{1}, v_{2}, v_{2}, \ldots, v_{2}, \ldots
$$

$\mathrm{c} P$ distinct values

Role of the Data Skew

Case 3: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates, no heavy hitters Assume each value occurs $\frac{N}{c P}$ times, for $\mathrm{c}>1$

$$
\begin{aligned}
& v_{\frac{N}{c P}}^{v_{1}, v_{1}, \ldots, v_{1}}, \underbrace{v_{2}, v_{2}, \ldots, v_{2}}_{\frac{N}{c P}}, \ldots \\
& X_{1}=\left[h\left(v_{1}\right)=j\right], \mathrm{X}_{2}=\left[h\left(v_{2}\right)=j\right], \ldots
\end{aligned}
$$

Role of the Data Skew

Case 3: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates, no heavy hitters Assume each value occurs $\frac{N}{c P}$ times, for $\mathrm{c}>1$

$$
\begin{aligned}
& \underbrace{v_{1}, v_{1}, \ldots, v_{1}}_{\frac{N}{c P}}, \underbrace{v_{2}, v_{2}, \ldots, v_{2}}_{\frac{N}{c P}}, \ldots \\
& X_{1}=\left[h\left(v_{1}\right)=j\right], \mathrm{X}_{2}=\left[h\left(v_{2}\right)=j\right], \ldots \\
& Y=\sum_{i} X_{i} \quad E[Y]=c \quad \operatorname{Load}(j)=Y \frac{N}{c P} \\
& \operatorname{Pr}(\text { Skew }) \leq P \cdot \operatorname{Pr}(Y>(1+\delta) E[Y])
\end{aligned}
$$

Role of the Data Skew

Case 3: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates, no heavy hitters Assume each value occurs $\frac{N}{c P}$ times, for $\mathrm{c}>1$

$$
\begin{gathered}
\underbrace{v_{1}, v_{1}, \ldots, v_{1}}_{\frac{N}{c P}}, \underbrace{v_{2}, v_{2}, \ldots, v_{2}}_{\frac{N}{c P}}, \ldots \\
X_{1}=\left[h\left(v_{1}\right)=j\right], \mathrm{X}_{2}=\left[h\left(v_{2}\right)=j\right], \ldots \\
Y=\sum_{i} X_{i} \quad E[Y]=c \quad \operatorname{Load}(j)=Y \frac{N}{c P} \\
\operatorname{Pr}(\text { Skew }) \leq P \cdot \operatorname{Pr}(Y>(1+\delta) E[Y]) \leq P \cdot \exp \left(-\frac{\delta^{2} c}{3}\right)
\end{gathered}
$$

Role of the Data Skew

Case 3: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$ have duplicates, no heavy hitters Assume each value occurs $\frac{N}{c P}$ times, for $\mathrm{c}>1$

$$
\begin{gathered}
\underbrace{v_{1}, v_{1}, \ldots, v_{1}}_{\frac{N}{c P}}, \underbrace{v_{2}, v_{2}, \ldots, v_{2}}_{\frac{N}{c P}}, \ldots \\
X_{1}=\left[h\left(v_{1}\right)=j\right], \mathrm{X}_{2}=\left[h\left(v_{2}\right)=j\right], \ldots \\
Y=\sum_{i} X_{i} \quad E[Y]=c \quad \operatorname{Load}(j)=Y \frac{N}{c P} \\
\operatorname{Pr}(\text { Skew }) \leq P \cdot \operatorname{Pr}(Y>(1+\delta) E[Y]) \leq P \cdot \exp \left(-\frac{\delta^{2} c}{3}\right) \\
\text { Need va } c \gtrsim \ln P
\end{gathered}
$$

Discussion

Use library hash function! Randomize!

- When each value occurs $\leq \frac{N}{P \cdot \ln P}$ times, then Load $\leq(1+\delta) \frac{N}{P}$ with high probability
- When some value occurs $\gg \frac{N}{P}$ times, the load will be skewed
- Gray area: when values occur $\approx \frac{N}{P}$ times: it can be shown that Load $\approx \frac{N \cdot \ln (P)}{P}$

SkewJoin

Main idea: separate the heavy hitters from the light hitters

- Hash join the light hitters: the partition is uniform because they are light
- Broadcast join the heavy hitters: works because there are very few heavy hitters

SkewJoin: Details

Query: $R \bowtie_{A=B} S, R . A=$ foreign key, $S . A=$ key

SkewJoin: Details

Query: $R \bowtie_{A=B} S, R . A=$ foreign key, $S . A=$ key

- Step 1: find the heavy hitters in R.A
- I.e. find the values $v=$ R.A that occur $\geq \frac{N}{P}$ times
- There are $\leq P$ heavy hitters! Broadcast them

SkewJoin: Details

Query: $\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{R} . \mathrm{A}=$ foreign key, $\mathrm{S} . \mathrm{A}=$ key

- Step 1: find the heavy hitters in R.A
- I.e. find the values $v=$ R.A that occur $\geq \frac{N}{P}$ times
- There are $\leq \mathrm{P}$ heavy hitters! Broadcast them
- Step 2: each sever partitions locally:

$$
R=R_{\text {light }} \cup R_{\text {heavy }}, S=S_{\text {light }} \cup S_{\text {heavy }}
$$

Notice: $\left|S_{\text {heavy }}\right| \leq P$ (i.e. it is small)

SkewJoin: Details

Query: $\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{R} . \mathrm{A}=$ foreign key, $\mathrm{S} . \mathrm{A}=$ key

- Step 1: find the heavy hitters in R.A
- I.e. find the values $v=$ R.A that occur $\geq \frac{N}{P}$ times
- There are $\leq \mathrm{P}$ heavy hitters! Broadcast them
- Step 2: each sever partitions locally:

$$
R=R_{\text {light }} \cup R_{\text {heavy }}, S=S_{\text {light }} \cup S_{\text {heavy }}
$$

Notice: $\left|S_{\text {heavy }}\right| \leq P$ (i.e. it is small)

- Step 3: hash-join $R_{\text {light }} \bowtie S_{\text {light }}$

SkewJoin: Details

Query: $\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{R} . \mathrm{A}=$ foreign key, $\mathrm{S} . \mathrm{A}=$ key

- Step 1: find the heavy hitters in R.A
- I.e. find the values $v=$ R.A that occur $\geq \frac{N}{P}$ times
- There are $\leq \mathrm{P}$ heavy hitters! Broadcast them
- Step 2: each sever partitions locally:

$$
R=R_{\text {light }} \cup R_{\text {heavy }}, S=S_{\text {light }} \cup S_{\text {heavy }}
$$

Notice: $\left|S_{\text {heavy }}\right| \leq P$ (i.e. it is small)

- Step 3: hash-join $R_{\text {light }} \bowtie S_{\text {light }}$
- Step 4: broadcast join $R_{\text {heavy }} \bowtie S_{\text {heavy }}$

Discussion

- Many distributed query processors do not handle skew well
- (Project idea: how does your favorite engine handle skewed data?)
- In practice, you may need to partition skewed data manually

