CSES544
Data Management

Lectures 4-6
Query Execution

CSE 544 - Winter 2021

Announcements

HW1 due on Friday

No lecture on Monday

Review 2 due on Wednesday (Ch. 1&2 only)
Project groups by next Friday (email to me)

CSE 544 - Winter 2021

Outline for the Next 3 Lectures

* Architecture of a DBMS

» Steps involved in processing a query
* Main Memory Operators
« Storage

« External Memory Operators

CSE 544 - Winter 2021 3

Architecture of DBMS

Local Client Remote Client
Protocols Protocols

Catalog
Manager

Admission Client Communications Manag
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and Utliity Monitoring &
Dispatch Processing Utilities

and Plan Executor
Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and
Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6

CSE 544 - Winter 2021

Warning: it will be confusing...

DBMS are monoliths: components cannot be
isolated

* Good news:
— Hole system has rich functionality and is efficient

 Bad news:
— Hard to discuss components in isolation

Multiple Processes

Local Client Remote Client
Protocols Protocols

Catalog
Manager

Admission Client Communications Manag
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and Utliity Monitoring &
Dispatch Processing Utilities

and Plan Executor

Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and
Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6

CSE 544 - Winter 2021

Why Multiple Processes

 DBMS listens to requests from clients
» Each request = one SQL command

* Handles multiple requests concurrently;
multiple processes

CSE 544 - Winter 2021

Process Models

* Process per DBMS worker
* Thread per DBMS worker
* Process pool

Next week's review:
Discuss pro/cons for each model

oo

Outline

Architecture of a DBMS

Steps involved in processing a query

Main Memory Operators
Storage

External Memory Operators

CSE 544 - Winter 2021

Query Optimization

Local Client Remote Client
Protocols Protocols

Catalog
Manager

Admission Client Communications Manag
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and Utliity Monitoring &
Dispatch Processing Utilities

and Plan Executor
Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and
Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6

CSE 544 - Winter 2021

Lifecycle of a Query

Query
optimization<

SQL que
!

ry

[Parse & Rewrite Query]

—

[Select Logical Plan} Lg?:r:]al

U

Select Physic

al Plan}
Physical
‘ _ plan
[Query Executlon}

|

Supplier(sno,sname,scity,sstate) NearbySupp(sno, sname)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Example Database Schema

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS
SELECT sno, sname
FROM Supplier
WHERE scity='Seattle' AND sstate="WA'

CSE 544 - Winter 2021 12

Supplier(sno,sname,scity,sstate) NearbySupp(sno, sname)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)
Example Query

* Find the names of all suppliers in
Seattle who supply part number 2

SELECT sno, sname FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supply

WHERE pno=2)

CSE 544 - Winter 2021 13

Lifecycle of a Query (1)

« Step 0: admission control
— User connects to the db with username, password
— User sends query in text format

« Step 1: Query parsing
— Parses query into an internal format

— Performs various checks using catalog:
Correctness, authorization, integrity constraints

« Step 2: Query rewrite

— View rewriting, flattening, decorrelation, etc.

CSE 544 - Winter 2021

14

Supplier(sno,sname,scity,sstate) NearbySupp(sno, sname)

Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

View Rewriting, Flattening
Original query:

SELECT sno, sname , "
FROM NearbySupp Vle\{v reYV”.“f‘g
WHERE sno IN (SELECT sho = view inlining
FROM Supply = VIeWw exXpansion
WHERE pno = 2) FIattening.
= unnesting

CSE 544 - Winter 2021 15

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

NearbySupp(sno, sname)

View Rewriting, Flattening

Original query:

SELECT sno, sname

FROM NearbySupp

WHERE sno IN (SELECT sno
FROM Supply
WHERE pno =2)

Rewritten query:

SELECT S.sno, S.sname

FROM Supplier S, Supply U

WHERE S.scity='Seattle' AND S.sstate="WA
AND S.sno = U.sno

AND U.pno = 2;

CSE 544 - Winter 2021

View rewriting
= view inlining
= view expansion
Flattening
= unnesting

16

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price) .
Decorrelation

Find all suppliers in ‘WA
that supply only parts
under $100

CSE 544 - Winter 2021 17

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Decorrelation
SELECT Q.sno Find all suppliers in ‘WA
FROM Supplier Q that supply only parts
WHERE Q.sstate = 'WA under gfg{) P
and not exists

(SELECT *

FROM Supply P

WHERE P.sno = Q.sno

and P.price > 100)

CSE 544 - Winter 2021 18

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price) .
Decorrelation

SELECT Q.sno
FROM Supplier Q

WHERE Q.sstate;‘w Correlation !
and not exists
(SELECT *

FROM Supply P
WHERE P.sno = Q8no
and P.price > 100)

CSE 544 - Winter 2021

19

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Decorrelation

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA
and not exists

(SELECT *

FROM Supply P

WHERE P.sno = Q.sno
and P.price > 100)

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA
and Q.sno not in
(SELECT P.sno
FROM Supply P

WHERE P.price > 100)

CSE 544 - Winter 2021 20

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Decorrelation

(SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA')
EXCEPT

(SELECT P.sno

FROM Supply P

WHERE P.price > 100)

EXCEPT = set difference

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA
and Q.sno not in
(SELECT P.sno
FROM Supply P

WHERE P.price > 100)

CSE 544 - Winter 2021 21

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Decorrelation

(SELECT Q.sno Finally...
FROM Supplier Q -
WHERE Q.sstate = ‘WA')

EXCEPT ///\\\\\
(SELECT P.sno Tsno “Tno

FROM Supply P T

WHERE P.price > 100)

GsstTe=‘WA’GPriT > 100

Supplier Supply

CSE 544 - Winter 2021 22

Lifecycle of a Query (2)

« Step 3: Query optimization
— Find an efficient query plan for the query
— We will spend two lectures on this topic

A query planis

— Logical query plan: a relational algebra tree
— Physical query plan: add specific algorithms

CSE 544 - Winter 2021

23

Five Basic Relational Operators

« Selection: o gngition(D)

* Projection: nlist-of—attributes(s)
* Union (V)

« Set difference (-),

» Cross-product/cartesian product (x),
Join: R NOS — O-O(RXS)

Other operators: semi-join, anti-semijoin

CSE 544 - Winter 2021 24

Extended Operators
of Relational Algebra

* Duplicate elimination (6)
— Convert a bag to a set
— Can be expressed as a group-by y
« Group-by/aggregate (y)
— Example: Ypcolor, max(psize)>m, avg(psize)%s(Part)
— Min, max, sum, average, count
— Partitions tuples of a relation into “groups”
— Aggregates can then be applied to groups

« Sort operator (1)

CSE 544 - Winter 2021

25

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price) .
Logical Query Plan

SELECT x.sname
FROM Supplier x, Supply y
WHERE x.sno=y.sno
and x.scity="Seattle’
and x.sstate="WA'

and y.pno=2

CSE 544 - Winter 2021

26

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price) .
Logical Query Plan

n sShame

o sscity="Seattle’ nsstate="WA’ A pno=2

SELECT x.sname
FROM Supplier x, Supply y
WHERE x.sno=y.sno]
and x.scity="Seattle’ SNO = sSNo
and x.sstate="WA'
and y.pno=2 / \

Supplier Suply

CSE 544 - Winter 2021 27

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price) .
Logical Query Plan

n sShame

o sscity="Seattle’ nsstate="WA’ A pno=2

[

SNO = sNo

N

Supplier Suply

CSE 544 - Winter 2021 28

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Physical Query Plan

(On the ﬂy) T sname

(On the ﬂy)] sscity="Seattle’ nsstate="WA’ A pno=2

Physical plan=
Nested Ioop)] Logical plan

SNO = SNO + choice of algorithms
\"‘ChOICG of access path
Access path
Suppller Suply

(File scan) (Index lookup)

CSE 544 - Winter 2021 29

Final Step in Query
Processing
« Step 4: Query execution
— Choice of algorithm

— How to pass data between operators,
e.g. materialized, or pipelined

CSE 544 - Winter 2021

30

Outline

Architecture of a DBMS

Steps involved in processing a query

Main Memory Operators

Storage

External Memory Operators

CSE 544 - Winter 2021

31

Multiple Processes

Admission
Control

Local Client
Protocols

Remote Client
Protocols

Client Communications Manag

Catalog
Manager

Query Parsing and Authorization

Dispatch
and
Scheduling

Query Rewrite

DDL and Utility
Processing

Access Methods

Buffer Manager

Lock Manager

Log Manager

Transactional Storage Manager (Sections 5 & 6

CSE 544 - Winter 2021

Memory
Manager

Administration,
Monitoring &
Utilities

Replication and
Loading
Services

Batch Utilities

Shared
Components and
Utilities (Section 7)

32

Physical Operators

* For each operator, several algorithms

 Main memory or external memory

CSE 544 - Winter 2021

33

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier Pgg-siq SUpply

Three algorithms:
1. Nested Loops
2. Hash-join

3. Merge-join

CSE 544 - Winter 2021

34

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

1. Nested Loop Join

Logical operator:
Supplier Pgg-siq SUpply

for x in Supplier do
for y in Supply do
if x.sid = y.sid
then output(x,y)

CSE 544 - Winter 2021

35

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

1. Nested Loop Join

Logical operator:
Supplier Pgg-siq SUpply

If |IR|=[S|=n,
what is the runtime?

for x in Supplier do
for y in Supply do
if x.sid = y.sid
then output(x,y)

CSE 544 - Winter 2021 36

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

1. Nested Loop Join

Logical operator:
Supplier Pgg-siq SUpply

If |IR|=[S|=n,
what is the runtime?

for x in Supplier do
for y in Supply do
if x.sid = y.sid
then output(x,y)

O(n?)

CSE 544 - Winter 2021 37

BRIEF Review of Hash Tables

A (naive) hash function: o

h(x) =x mod 10

© 00 N O O b WO DN -

Separate chaining:

Duplicates OK
WHY ?7?

503

103

503

76

666

48

BRIEF Review of Hash Tables

A (naive) hash function: o

h(x) =x mod 10

Operations:

find(103) = ??

© 00 N O O b WO DN -

Separate chaining:

Duplicates OK
WHY ?7?

503

103

503

76

666

48

BRIEF Review of Hash Tables

A (naive) hash function: o

h(x) =x mod 10

Operations:

find(103) = ??

© 00 N O O b WO DN -

Separate chaining:

Duplicates OK
WHY ?7?

503

103

503

76

666

48

BRIEF Review of Hash Tables

A (naive) hash function: o

h(x) =x mod 10

Operations:

find(103) = ??
insert(488) = ??

© 00 N O O b WO DN -

Separate chaining:

Duplicates OK
WHY ?7?

503

103

503

76

666

48

BRIEF Review of Hash Tables

A (naive) hash function: o

h(x) =x mod 10

Operations:

find(103) = ??
insert(488) = ??

© 00 N O O b WO DN -

Separate chaining:

Duplicates OK
WHY ?7?

503

103

503

76

666

488

48

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supply Psig=sia Supplier

for x in Supplier do
insert(x.sid, x)

for y in Supply do
X = find(y.sid);
output(x,y);

CSE 544 - Winter 2021

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supply Psig=sia Supplier

for x in Supplier do
insert(x.sid, x)

If |IR|=[S|=n,
what is the runtime?

for y in Supply do
X = find(y.sid);
output(x,y);

CSE 544 - Winter 2021 44

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supply Psig=sia Supplier

for x in Supplier do
insert(x.sid, x)

If |IR|=[S|=n,
what is the runtime?

for y in Supply do O(n)
X = find(y.sid);

output(x,y);

CSE 544 - Winter 2021 45

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supplier Pgg-siq SUpply

[Change join order}

=

for y in Supply do
insert(y.sid, y)

for x in Supplier do
?7°?7°7°?

46

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supplier Mgiyeq SUpply [Change join order]

=

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do
output(x,y);

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supplier Mgiyeq SUpply [Change join order]

=

for y in Supply do
insert(y.sid, y)

It [R|=[S]=n,
what is the runtime?
for x in Supplier do

for y in find(x.sid) do
output(x,y);

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

Logical operator:
Supplier Mgiyeq SUpply [Change join order]

=

for y in Supply do
insert(y.sid, y)

It [R|=[S]=n,
what is the runtime?
for x in Supplier do

for y in find(x.sid) do
output(x,y);

O(n)
But can be O(n2) why?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

[Why would we change the order? }

Logical operator: 4
Supplier Py SUpply [Change join order]

=

for y in Supply do
insert(y.sid, y)

It [R|=[S]=n,
what is the runtime?
for x in Supplier do

for y in find(x.sid) do
output(x,y);

O(n)
But can be O(n?) why?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

2. Hash Join

[Why would we change the order? }

Logical operator: When |Supply| << |Supplier|

Supplier Py SUpply [Change join orderJ

=

for y in Supply do
insert(y.sid, y)

It [R|=[S]=n,
what is the runtime?
for x in Supplier do

for y in find(x.sid) do
output(x,y);

O(n)
But can be O(n?) why?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:

Supplier Mgig-sig SUPPly
Sort(Supplier); Sort(Supply);
x = Supplier.first();

y = Supply.first();

CSE 544 - Winter 2021

52

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Pg;g=sig Supply
Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y 1= NULL do
case:
X.sid < y.sid: 7?7
X.sid = y.sid: 777
X.sid > y.sid: 7?77

CSE 544 - Winter 2021

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Pdgjg-sig SUpPPly
Sort(Supplier); Sort(Supply);
X = Supplier.first();
y = Supply.first();
while y 1= NULL do

case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: ?77?
x.sid > y.sid: ?77?

CSE 544 - Winter 2021

54

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Pgig=siq SUpPPly
Sort(Supplier); Sort(Supply);
X = Supplier.first();
y = Supply.first();
while y = NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: ?77?

CSE 544 - Winter 2021

95

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Pgig-sia SUpply
Sort(Supplier); Sort(Supply);
X = Supplier.first();
y = Supply.first();
while y = NULL do

case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

CSE 544 - Winter 2021

56

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Msig-sis Supply
Sort(Supplier); Sort(Supply);

X = Supplier..first(); If |IR|=|S|=n,
y = Supply.first(); what is the runtime?
while y = NULL do

case:

x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
X.sid > y.sid: y = y.next();

CSE 544 - Winter 2021 Y

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

3. Merge Join

Logical operator:
Supplier Msig-sis Supply
Sort(Supplier); Sort(Supply);

X = Supplier..first(); If |IR|=|S|=n,
y = Supply.first(); what is the runtime?
while y = NULL do
case:
x.sid < y.sid: x = x.next() O(n log(n))

x.sid = y.sid: output(x,y); y = y.next();
X.sid > y.sid: y = y.next();

CSE 544 - Winter 2021 58

Announcements

* Project teams due by Friday (email to me)

« HW2 posted, we use Snowflake
— Consider using Snowflake in your project!

* Architecture paper was due today

CSE 544 - Winter 2021

59

Discuss Architecture Paper

Local Client Remote Client
Protocols Protocols

Catalog
Manager

Admission Client Communications Manag
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and Utliity Monitoring &
Dispatch Processing Utilities

and Plan Executor
Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and
Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6

CSE 544 - Winter 2021

Recap: Main Memory
Algorithms

« Join X:
— Nested loop join
— Hash join
— Merge join
« Selection o
— “on-the-fly”
— Index-based selection (next lecture)

* Group by y Briefly discuss
— Hash-based In class

— Merge-based 61

How Do We Combine Them??

CSE 544 - Winter 2021 62

How Do We Combine Them??

he lterator Interface clr
P>
.+ open() TN
P w
. next() e

* close() R

CSE 544 - Winter 2021 63

Implementing Query Operators
with the lterator Interface

interface Operator {

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator c) {
// and sets parameters this.p = p; this.c = c; c.open();
void open (...); }

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...
void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {
r = c.next();
if (r == null) break;
found = p(r);
}

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {
r = c.next();
if (r == null) break;
found = p(r);
}

return r;

}

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

}

void open (Predicate p,
Operator c) {
this.p = p; this.c = c; c.open();
}
Tuple next () {
boolean found = false;

Tuple r = null;

while (!found) {
r = c.next();
if (r == null) break;
found = p(r);

}

return r;

}

void close () { c.close(); }

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Query plan execution

Operator g = parse(“SELECT ...”);
g = optimize(q);

q.open();

while (true) {
Tuple t = g.next();
if (t == null) break;
else printOnScreen(t);

g.close();

74

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close
for nested loop join

(On the fly) TMename

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

=
(Nested loop) e
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 75

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

(On the fly) .. oPen()

Discuss: open/next/close
for nested loop join

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

=
(Nested loop) e
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

76

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the f|y) T, arr?epen() for nested loop join
open()
(On the ﬂy())'scity= ‘Seattle’ and jstate= ‘WA and pno=2
=7
(Nested loop) .
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

77

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the f|y) T, arr?epen() for nested loop join
open()
(On the ﬂy())'scity= ‘Seattle’ and jstate= ‘WA and pno=2
open()
(Nested loop) ==
sid = si
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

78

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the f|y) T, arr?epen() for nested loop join
open()
(On the ﬂy())'scity= ‘Seattle’ and Tstate= ‘WA and pno=2
open()
(Nested loop) ==
sid = si
ope
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

79

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close
for nested loop join

(On the fly) T anc])epen()
r\ open()
(On the ﬂy())-scity= "Seattle’ and Tstate= "WA’ and pno=2
open()
(Nested loop) —
sid = si
OpeM)/ d\Qpelﬂ()
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

80

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close
next() for nested loop join

(On the fly) TMename

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

=
(Nested loop) e
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 81

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close
next() for nested loop join

(On the fly) TMename

next()
(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

=
(Nested loop) e
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 82

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the fly) . anf]]eeXt() for nested loop join
next
(On the ﬂy())-scity= ‘Seattle’ and sstate= ‘W,g\’)and pno=2
next()
(Nested loop) ==
sid = si
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

83

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the fly) . anf]]eeXt() for nested loop join
next
(On the ﬂy())-scity= ‘Seattle’ and sstate= ‘W,g\’)and pno=2
next()
(Nested loop) ==
sid = si
next
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

84

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close

(On the fly) an]\eext for nested loop join
next()
(On the ﬂy())-suty- Seattle’ and sstate= WA and pno=2
next()
(Nested loop) ==
sid = si
o / \eXt()
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 85

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss: open/next/close
next for nested loop join

(On the fly)

sTme
next()
(On the ﬂy())-suty- Seattle’ and sstate= WA and pno=2

next()
(Nested loop) ij
next ext()
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021

86

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss hash-join
(On the fly) . in class

Tme

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

(Hash Join) [. .]
/ sid = Sld\
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 87

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss hash-join
(On the fly) T ename in class

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

Tuples from

(Hash Join) — bloskec:
sid = si
Supply Supplier
(File scan) (File scan)

CSE 544 - Winter 2021 88

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipelining

Discuss hash-join
(On the fly) TMename in class

(On the ﬂy())-scity= ‘Seattle’ and sstate="WA’ and pno=2

Tuples from
here are
“blocked”

(Hash Join) =]

sid = si

Tuples from
here are
pipelined

Supply Supplier

(File scan) (File scan)
CSE 544 - Winter 2021 89

Supplier(sid, sname, scity, sstate)

weevsidene BIgked Execution

(On the fly) T

ame . o
Discuss merge-join
In class

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

=

Supply Supplier

(File scan) (File scan)
CSE 544 - Winter 2021 90

(Merge Join)

Supplier(sid, sname, scity, sstate)

weevsidene BIgked Execution

Discuss merge-join
In class

(On the ﬂy())-scity= "Seattle’ and jstate= "WA’ and pno=2

(Merge Join)

Sld Si
Blocked Blocked

Supply Supplier

(File scan) (File scan)
CSE 544 - Winter 2021 91

Pipeline v.s. Blocking

* Pipeline
— A tuple moves all the way through up the query plan
— Advantages: speed
— Disadvantage: need all hash tables in memory

» Blocking

— Compute and store on disk entire subplan
— Advantage: needs less memory
— Disadvantage: slower

92

Outline

Architecture of a DBMS
Steps involved in processing a query

Main Memory Operators

Storage

External Memory Operators

CSE 544 - Winter 2021

93

Multiple Processes

Local Client Remote Client
Protocols Protocols

Catalog
Manager

Admission Client Communications Manag
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and Utliity Monitoring &
Dispatch Processing Utilities

and Plan Executor
Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4

Access Methods Buffer Manager
Batch Utilities

Lock Manager Log Manager Shared
Components and
Utilities (Section 7)

ger (Sections 5 & 6

CSE 544 - Winter 2021

The Mechanics of Disk

Cylinder
Mechanical characteristics: ' () spindie
 Rotation speed (5400RPM) bisk head ()4 Tracks
» Number of platters (1-30) —— A

Sector

* Number of tracks (<=10000
« Number of bytes/track(10°)

l/,

—

. . ¢
Unit of read or write: YN A Platters
dl_sk block _—
Once in memory:
111 _)
page Arm assembly 05

Typically: 4k or 8k or 16k

Data Storage

« DBMSs store data in files

Student

ID fName IName
10 | Tom Hanks
20 | Amy Hanks

* Most common organization is row-wise storage

* On disk, a file is split into

10

Tom

Hanks

blocks

 Each block contains

a set of tuples

block 1
20 Amy Hanks
>0 block 2
200
220 block 3
240
420
800
es each

In the example, we have 4 blocks with Ztup

Basic fact: disks always read/write an entire block at a time

Disk Access Characteristics

Disk latency

— Time between when command is issued and when data is in
memory

— Equals = seek time + rotational latency
Seek time = time for the head to reach cylinder
— 10ms — 40ms

Rotational latency = time for the sector to rotate
» Rotation time = 10ms
« Average latency = 10ms/2

Transfer time = typically 40MB/s

Basic fact: disks access MUCH slower than main memory

Buffer Manager

Page Requests from Higher Levels
BUFFER POOL

disk page
/_,/
free frame
MAIN MEMORY
DISK choice of frame dictated
DB by replacement policy

« Data must be in RAM for DBMS to operate on it!
 Table of <frame#, pageid> pairs is maintained

Buffer Manager

Needs to decide on page replacement policy

* LRU
* Clock algorithm

Both work well in OS, but not always in DB
Enables the higher levels of the

DBMS to assume that the
needed data is in main memory.

99

Arranging Pages on Disk

A disk is organized into blocks (a.k.a. pages)
* blocks on same track, followed by

* blocks on same cylinder, followed by

* blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on
disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a
time is a big win!

CSE 544 - Winter 2021 100

Storing Records On Disk

» Page format: records inside a page
* Record format: attributes inside a record

* File Organization

CSE 544 - Winter 2021 101

Page Format

* 1 page = 1 disk block = fixed size (e.g. 8KB)

* Records:
— Fixed length
— Variable length

 Record id =RID
— Typically RID = (PagelD, SlotNumber)

Need RID’s for indexes and for transactions

102

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|Ot1 SlOtz S|OtN

[Freespce [N

How do we insert a new record? Number of records

CSE 544 - Winter 2021 103

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SIOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

CSE 544 - Winter 2021 104

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SIOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

How do we delete a record?

CSE 544 - Winter 2021 105

Page Format Approach 1

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PagelD,SlotNb)

S|0t1 SlOtz SlOtN SIOtN+1

[Freesp. [N

How do we insert a new record? Number of records

How do we delete a record? Cannot remove record (why?)

How do we handle variable-length records? 106

Page Format Approach 2

—

f 4 [F
Free space

\ J

Header contains slot directory Y ,
+ Need to keep track of nb of slots Slot directory
+ Also need to keep track of free space (F)

Can handle variable-length records

Can move tuples inside a page without changing RIDs
RID is (PagelD, SlotID) combination

CSE 544 - Winter 2021 107

Record Formats

Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 e e Field K

Information about field lengths and types is in the catalog

CSE 544 - Winter 2021 108

Record Formats

Variable length records
\)

Field 1 Field 2 e e Field K
\

Record header

Remark: NULLS require no space at all (why ?)

CSE 544 - Winter 2021 109

Announcements

* Project teams were due last week
 PAX paper review due on Wednesday

« HW2 Snowflake due on Friday

CSE 544 - Winter 2021 110

W
W
W

Quick Review

nat is the unit of access for RAM*?
nat is the unit of access for disk?

ny the difference?

 What is the Buffer Pool?

 Describe how a table is stored on disk

*RAM = Random Access memory = main memory

111

Notes for the PAX paper

Memory hierarchies:

CPU

%

-
/Disk A /I\/Iain memory) Cache*

TN
Buffer pool U

T N

1 cache line
R\ By @
\ J

*aka CPU cache; several! L3, L2, L1 cache '

File Organizations

 Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

« Sequential file (sorted): Best if records must be
retrieved in some order, or by a range’

* |Index: Data structures to organize records via trees
or hashing.

113

Index

* An additional file, that allows fast access to
records in the data file given a search key

CSE 544 - Winter 2021 114

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:

— Key = an attribute value (e.g., student ID or name)
— Value = a pointer to the record OR the record itself

« Could have many indexes for one table

[Key = means here search key}

CSE 544 - Winter 2021 115

Index Actor_ID on Actor.ID
/__’A‘_—\

Example 1:
Index on ID

Data File Actor]| ...

Actor

ID | fName | IName
10 | Tom Hanks
20 | Amy Hanks

/—M

10

/

10

Tom

Hanks

20

| __ >

20

Amy

Hanks

50

—

200

50

220

 —

200

240

420

220

800

240

950

420

800

Index on fName

Example 2:

Index Actor_fName
on Actor.fName

—

Actor

ID | fName | IName
10 | Tom Hanks
20 | Amy Hanks

Data File Actor]| ...

/—M

Amy

—_

10

Tom

Hanks

Ann

20

Amy

Hanks

Bob

— 7

Cho

50

200

220

240

420

800

Tom

117

B+ Tree Index by Example

d=2 Find the key 40
80
20 | 60 100 | 120 | 140
\ T~
20\\ﬂ<= 60 \\\A
151 18 20 | 30| 40 | 50 60 | 65 80 | 85| 90
\ 1R 1A - 1

RANAC =

N\ R N
15| | 18| |[20| [30||40| 50|/ 60|/ 65| 80 |85]| |90

CSE 544 - Winter 2021 118

Clustered vs Unclustered

/4£i;é% /4ZT%E9

J N Index entries / \

Index entries -
/A |\ ANNN (Index File) m /X

/4 NN Datafil) /X N\ No4 T I

Data Records Data Records
CLUSTERED UNCLUSTERED
[Every table can have only one clustered and many unclustered indexes}
Why?

CSE 544 - Winter 2021 119

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data

CSE 544 - Winter 2021 120

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
 Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered

CSE 544 - Winter 2021 121

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data

 Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered
« Organization B+ tree or Hash table

CSE 544 - Winter 2021 122

Discussion on Indices

 What they do: speed up disk access
What they don’t: speed up RAM algo.

* They benefit only SELECT queries that have
some predicate A=... or A<=...

* They hurt all INSERT/UPDATE/DELETE
queries (why?)

CSE 544 - Winter 2021 123

Outline

 Architecture of a DBMS
» Steps involved in processing a query
* Main Memory Operators

« Storage

« External Memory Operators

CSE 544 - Winter 2021 124

Architecture

Admission
Control

Dispatch
and
Scheduling

Local Client
Protocols

Remote Client

Protocols

Client Communications Manag

Catalog
Manager

Query Parsing and Authorization

Query Rewrite

Query Optimizer

DDL and Utility

Processing

Plan Executor

Access Methods

Lock Manager

Buffer Manager

Log Manager

Transactional Storage Manag

or (Sections 5 & 6

CSE 544 - Winter 2021

Memory
Manager

Administration,
Monitoring &
Utilities

Replication and
Loading
Services

Batch Utilities

Shared

Components and
Utilities (Section 7)

125

Cost Parameters

In database systems the data is on disk

Parameters:

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

— M = # pages available in main memory

Cost = total number of I/0Os

Convention: writing the final result to disk is

not included
CSE 544 - Winter 2021

126

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

« B(Supplier) = 1,000,000 blocks = 8GB
« T(Supplier) = 50,000,000 records ~ 50 / block

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

« B(Supplier) = 1,000,000 blocks = 8GB
« T(Supplier) = 50,000,000 records ~ 50 / block
« V(Supplier, sid) = 50,000,000 why?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

« B(Supplier) = 1,000,000 blocks = 8GB
« T(Supplier) = 50,000,000 records ~ 50 / block
« V(Supplier, sid) = 50,000,000 why?

V(Supplier, sname) = 40,000,000 meaning?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

« B(Supplier) = 1,000,000 blocks = 8GB
« T(Supplier) = 50,000,000 records ~ 50 / block
« V(Supplier, sid) = 50,000,000 why?

* V(Supplier, sname) = 40,000,000 meaning?
* V(Supplier, scity) = 860

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)

Block size = 8KB

« B(Supplier) = 1,000,000 blocks

« T(Supplier) = 50,000,000 records
« V(Supplier, sid) = 50,000,000

* V(Supplier, sname) = 40,000,000
* V(Supplier, scity) = 860

* V(Supplier, sstate) = 50

= 8GB

~ 50 / block
why?
meaning?

why?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)

Block size = 8KB

« B(Supplier) = 1,000,000 blocks

« T(Supplier) = 50,000,000 records
« V(Supplier, sid) = 50,000,000

* V(Supplier, sname) = 40,000,000
* V(Supplier, scity) = 860

* V(Supplier, sstate) = 50

- M=10,000,000 =80GB

= 8GB

~ 50 / block
why?
meaning?

why?
why so little?

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection

Selection on equality: G,=(R)
V(R, a) = # of distinct values of attribute a

Cost of index-based selection:
e (Clustered index on a:
 Unclustered index on a:

CSE 544 - Winter 2021 133

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection

Selection on equality: G,=(R)
V(R, a) = # of distinct values of attribute a
Assumptions:

» Values are uniformly distributed
 Ignore the cost of reading the index (why?)

Cost of index-based selection:
e (Clustered index on a:
 Unclustered index on a:

CSE 544 - Winter 2021 134

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection

Selection on equality: G,=(R)
V(R, a) = # of distinct values of attribute a
Assumptions:

» Values are uniformly distributed
 Ignore the cost of reading the index (why?)

Cost of index-based selection:
e Clustered index on a: cost = B(R)/ V(R,a)
* Unclustered index on a: cost=T(R)/V(R,a)

CSE 544 - Winter 2021 135

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection
B(R) = 2000

- Example: | T(R)= 100,000
V(R, a) =20

costof 6. (R) =7

« Table scan (assuming R is clustered)

 |[ndex based selection
— If index is clustered:
— If index is unclustered:

CSE 544 - Winter 2021 136

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection
B(R) = 2000

- Example: | T(R)= 100,000
V(R, a) =20

costof 6. (R) =7

« Table scan (assuming R is clustered)
— B(R) = 2,000 I/Os
* Index based selection

— If index is clustered:
— If index is unclustered:

CSE 544 - Winter 2021 137

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection
B(R) = 2000

- Example: | T(R)= 100,000
V(R, a) =20

costof 6. (R) =7

« Table scan (assuming R is clustered)
— B(R) = 2,000 I/Os
* Index based selection

— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered:

CSE 544 - Winter 2021 138

SELECT *
FROM R

WHERE R.a=v

ndex Based Selection
B(R) = 2000

- Example: | T(R)= 100,000
V(R, a) =20

costof 6. (R) =7

« Table scan (assuming R is clustered)
— B(R) = 2,000 I/Os
* Index based selection

— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 544 - Winter 2021 139

SELECT *
FROM R

WHERE R.a=v

B(R) = 2000

ndex Based Selection

Example: | T(R)= 100,000
V(R, a) =20

costof 6. (R) =7

Table scan (assuming R is clustered)

The 2% rule!

— B(R) = 2,000 I/Os
Index based selection

— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson

— Don’t build unclustered indexes when V(R,a) is small !

CSE 544 - Winter 2021

140

To Cluster or Not

Remember:

 Rule of thumb:
Random reading 1-2% of file =
sequential scan entire file;

Range queries benefit mostly from
clustering because they may read more
than 1-2%

CSE 544 - Winter 2021 141

SELECT *
FROM R
WHERE R.K>? and R.K«?

Cost

0 100
Percentage tuples retrieved
CSE 544 - Winter 2021 142

Cost

SELECT *
FROM R
WHERE R.K>? and R.K«?

Sequential scan

0 100
Percentage tuples retrieved
CSE 544 - Winter 2021 143

Cost

SELECT *
FROM R
WHERE R.K>? and R.K«?

Sequential scan

.~det
us\e(ed
C\

100
Percentage tuples retrieved
CSE 544 - Winter 2021 144

Cost

SELECT *
FROM R
WHERE R.K>? and R.K«?

X
)
e
£
5
o
2
g
)

Sequential scan
6.\0(36*
0\05\6(3
0 100

Percentage tuples retrieved
CSE 544 - Winter 2021 145

External Memory Joins

Nested loop join
Index join, a.k.a. index nested loop join
Partitioned hash-join, a.k.a. grace join

Merge-join

CSE 544 - Winter 2021 146

Nested Loop Joins

RxS

Naive nested loop joint: T(R) * B(S) I/0Os? WHY?
Of course, can switch order: B(R) * T(S)

We can be much cleverer by using the available main
memory: M

Assume |R| >> [S|. (Outer relation is bigger than
inner relation)

CSE 544 - Winter 2021 147

Block Nested Loop Join

Group of (M-2) pages of S is called a “block”

Main memory
hash-join
(M-1)ps ™ pr

for each (M-2) pages ps of S do
for each page pr of R do
for each tuple sin ps

for each tuple rin pr do

if rand s join then output(r,s)

CSE 544 - Winter 2021 148

Block Nested Loop Join

R&S Join Result

> Hash table for block of S >
(M-2 pages)

Y

=

Input buffer for R Output buffer

.
>

Y

CSE 544 - Winter 2021 149

Nested Loop Joins

Cost of block-based nested loop join
 Read S once: B(S)

« Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

. Total cost: [B(S) + B(S)B(R)/(M-Z)}

CSE 544 - Winter 2021 150

Nested Loop Joins

Cost of block-based nested loop join
 Read S once: B(S)

« Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

. Total cost: [B(S) + B(S)B(R)/(M-Z)}

lterate over the smaller relation first!

CSE 544 - Winter 2021 151

Index Nested Loop Join

RxS

 Assume S has an index on the join attribute

 lterate over R, for each tuple fetch corresponding
tuple(s) from S

» Cost:
— Ifindex on S is clustered: B(R) + T(R)B(S)/ V(S,a)
— If index on S is unclustered: B(R) + T(R)T(S)/ V(S,a)

CSE 544 - Winter 2021 152

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

INPUT

—

Disk

M main memory buffers

Partitions
e

~
Disk

1
2

M-1

153

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

~
Disk

M-1

154

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

~
Disk

M-1

155

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

~
Disk

M-1

156

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

157

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

158

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

159

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

160

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

Partitions
e

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

161

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

B(R)

Relation

S

S—
=

Partitions @
u
k/

1
2

R
OUTPUT
1
INPUT 2
> futrll%?l%n o0
h M-1
M main memory buffers

—
Disk

M-1

162

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk

« Each bucket has size approx. B(R)/M

B(R)

Relation R

S

INPUT

> fu?\%?lon

—

Disk

h

OUTPUT

1

S—
=

2

h
¢ ¢

M-1

0

Partitions @
u
k/

1
2

M main memory buffers

—
Disk

M-1

163

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk
« Each bucket has size approx. B(R)/M

B(R)

Relation R

S

INPUT

> futrll%?l%n

h

OUTPUT | Partitions m
ucke
1 ———— bucket
" 1
2
MR 00 ¢
M-1
M-1

M main memory buffers

When does each

bucket fit in
memory?

164

Two Pass Algorithms

 |dea: partition a relation R into buckets, on disk
« Each bucket has size approx. B(R)/M

Relation R

B(R)

When B(R)/M < M,

S

INPUT

> func?lon

OUTPUT

1

=

hash
h o ¢

M-1

0

—

Disk

l.e. B(R) <

M?2

M main memory buffers

When does each

bucket fit in
memory?

Partitions @
u
k/

1
2

M-1

165

Partitioned (Grace) Hash Join

RxS

o Step 1:
— Hash S into M-1 buckets
— Send all buckets to disk

o Step 2
— Hash R into M-1 buckets
— Send all buckets to disk

o Step 3

— Join every pair of buckets

CSE 544 - Winter 2021 166

Partition R using hash fn h

RxS

Original
Relation
S

Disk

Partitions
e

OUTPUT
1
INPUT 2
hash
> function
00 ¢
h M-1
B main memory buffers

CSE 544 - Winter 2021

—
Disk

M-1

167

Partition S using hash fn h

RxS

Original
Relation
S

Disk

OUTPUT Partitions
1 e
1
INPUT 2
hash 2
> function
h °0 o ¢ 0
M-1
M-1
: N~
B main memory buffers Disk

CSE 544 - Winter 2021

168

Partitioned Hash Join

Rx S
* Read in partition of S, hash it using h2 (= h)
« Scan same partition of R, search for matches

Partitions]
ofR&S Join Result
— Hash table for partition
hash Si (< M-1 pages) —
fn .
h2 R [2 2 .
o 0 0 éhz . et
Input buffer Output []
=Y for R; buffer .
Disk B main memory buffers Disk

CSE 544 - Winter 2021 169

Partitioned Hash Join

» Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) < M?

CSE 544 - Winter 2021 170

Hybrid Hash Join Algorithm

Assume we have extra memory available

Partition S into k buckets
t buckets S, , ..., S; stay in memory

k-t buckets S, 4, ..., Sy to disk

Partition R into k buckets

— First t buckets join immediately with S
— Rest k-t buckets go to disk

Finally, join k-t pairs of buckets:
(Rt+1’St+’|)’ (Rt+2’St+2)’ Ty (Rk’Sk)

CSE 544 - Winter 2021

171

Hybrid Hash Join Algorithm

How to choose k and t ?
* The first t buckets must fin in M: t’/k *B(S) <M

CSE 544 - Winter 2021 172

Hybrid Hash Join Algorithm

How to choose k and t ?
* The first t buckets must fin in M: t’/k *B(S) <M
 Need room for k-t additional pages: k-t<M

CSE 544 - Winter 2021 173

Hybrid Hash Join Algorithm

How to choose k and t ?

* The first t buckets must fin in M: t’/k *B(S) <M
 Need room for k-t additional pages: k-t<M
* Thus: t’/k * B(S) + k-t<M

CSE 544 - Winter 2021 174

Hybrid Hash Join Algorithm

How to choose k and t ?

* The first t buckets must fin in M: t’/k *B(S) <M
 Need room for k-t additional pages: k-t<M

* Thus: t’/k * B(S) + k-t<M
Assuming t/k * B(S) > k-t: t/k = M/B(S)

CSE 544 - Winter 2021 175

Hybrid Hash Join Algorithm

« How many I/Os ?

Cost of partitioned hash join: 3B(R) + 3B(S)

Hybrid join saves 2 |/Os for a t/k fraction of buckets
Hybrid join saves 2t/k(B(R) + B(S)) [/Os

Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

CSE 544 - Winter 2021 176

External Sorting

* Problem: Sort a file of size B with memory M

 Where we need this:
— ORDER BY in SQL queries
— Several physical operators
— Bulk loading of B+-tree indexes.

« Will discuss only 2-pass sorting, for when B < M?

CSE 544 - Winter 2021 177

External Merge-Sort: Step 1

* Phase one: load M pages in memory, sort

| —___ | Size M pages | |

Disk Main memory

Runs of length M
#Runs = B(R)/M

CSE 544 - Winter 2021 178

External Merge-Sort: Step 2

* Merge M — 1 runs into a new run
« Result: runs of length M (M — 1) ~ M?

M~ @
//

Input 1

Disk

Assuming B < M?, we are done

~I Input 2

Output

Y

-

|
*Inputhﬂ

Main memory

CSE 544 - Winter 2021

179

External Merge-Sort

» Cost:
— Read+write+read = 3B(R)
— Assumption: B(R) <= M?

 Other considerations

— In general, a lot of optimizations are
possible

CSE 544 - Winter 2021 180

Two-Pass Algorithms
Based on Sorting

Grouping: Ya, sum(b) (R)

Sort, then compute the sum(b) for each group of a’'s

Step 1: sort chunks of size M, write
— cost 2B(R)

Step 2: merge M-1 runs, combining groups by
addition
— cost B(R)

Total cost: 3B(R), Assumption: B(R) < M?

CSE 544 - Winter 2021 181

Two-Pass Algorithms
Based on Sorting

JOInR x S

« Start by creating initial runs of length M, for R and S:
— Cost: 2B(R)+2B(S)
* Merge (and join) M, runs from R, M, runs from S:
— Cost: B(R)+B(S)
« Total cost: 3B(R)+3B(S)
e Assumption:
— R has M=B(R)/M runs, S has M,=B(S)/M runs
- My+My,sM
— Hence: B(R)+B(S)=< M2

CSE 544 - Winter 2021 182

Summary of External
Join Algorithms

« Block Nested Loop Join: B(R) + B(R)*B(S)/M

« Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)

« Hash Join: 3(B(R) + B(S))

Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))

« Sort-Merge Join: 3B(R)+3B(S)

CSE 544 - Winter 2021 183

