
Foundations and TrendsR© in Databases
Vol. 5, No. 2 (2012) 105–195
c© 2013 T. J. Green, S. Huang, B. T. Loo, W. Zhou
DOI: 10.1561/1900000017

Datalog and Recursive Query Processing

Todd J. Green Shan Shan Huang
LogicBlox Inc. LogicBlox Inc.

todd.green@logicblox.com ssh@logicblox.com

Boon Thau Loo Wenchao Zhou
University of Pennsylvania Georgetown University
boonloo@cis.upenn.edu wzhou@cs.georgetown.edu

Contents

1 Introduction 106
1.1 Contributions and Roadmap 108
1.2 Relationship with Previous Surveys 109
1.3 First Example: All-Pairs Reachability 110

2 Language and Semantics 113
2.1 Language . 113
2.2 Semantics . 115
2.3 Negation . 120
2.4 Aggregation . 126

3 Recursive Query Processing 131
3.1 Bottom-up Evaluation . 132
3.2 Top-down Evaluation . 135
3.3 Magic Sets . 141

4 Incremental Maintenance 151
4.1 Counting Algorithm for Non-recursive Queries 152
4.2 Delete and Re-Derive Algorithm (DRed) 153
4.3 Provenance-based Incremental Maintenance 155
4.4 Incremental Maintenance for Negation and Aggregates . . 155

ii

iii

5 Datalog Extensions 157
5.1 Beyond Stratified Negation 157
5.2 Beyond Stratified Aggregation 159
5.3 Arithmetic and Infinite Relations 161
5.4 Functors . 163
5.5 States and Updates . 165

6 Applications 169
6.1 Program Analysis . 169
6.2 Declarative Networking 172
6.3 Data Integration and Exchange 175
6.4 Enterprise Software . 180
6.5 Other Applications . 183

Acknowledgements 186

References 187

Abstract

In recent years, we have witnessed a revival of the use of recursive
queries in a variety of emerging application domains such as data in-
tegration and exchange, information extraction, networking, and pro-
gram analysis. A popular language used for expressing these queries is
Datalog. This paper surveys for a general audience the Datalog lan-
guage, recursive query processing, and optimization techniques. This
survey differs from prior surveys written in the eighties and nineties
in its comprehensiveness of topics, its coverage of recent developments
and applications, and its emphasis on features and techniques beyond
“classical” Datalog which are vital for practical applications. Specifi-
cally, the topics covered include the core Datalog language and various
extensions, semantics, query optimizations, magic-sets optimizations,
incremental view maintenance, aggregates, negation, and types. We
conclude the paper with a survey of recent systems and applications
that use Datalog and recursive queries.

T. J. Green, S. Huang, B. T. Loo, W. Zhou. Datalog and Recursive Query
Processing. Foundations and TrendsR© in Databases, vol. 5, no. 2, pp. 105–195,
2012.
DOI: 10.1561/1900000017.

1
Introduction

Mainstream interest in Datalog in the database systems community
flourished in the eighties and early nineties. During this period, there
were several pioneering Datalog systems, primarily from academia. Two
of the more prominent ones with complete implementations include
Coral [99] and LDL++ [20]. Some ideas from these early research pro-
totypes made it into mainstream commercial databases. For instance,
Oracle, DB2, and SQL Server provide support for limited forms of sup-
port for recursion, based on SQL-99 standards. However, a perceived
lack of compelling applications at the time [113] ultimately forced Dat-
alog research into a long dormancy, and stifled its use in practice. Coral
and LDL++ ceased active development in 1997 and 2000 respectively,
and commercial systems did not extend a limited form of Datalog.

In recent years, however, Datalog has reemerged at the center of a
wide range of new applications, including data integration [68, 43, 50],
declarative networking [80, 77, 75], program analysis [29], information
extraction [110], network monitoring [10], security [85, 60], optimiza-
tions [73], and cloud computing [15, 16]. Compared to the state-of-the-
art of two decades ago, the modern systems that drives these emerging
applications have significantly more mature and complete Datalog im-

106

107

plementations, and often times deploy applications that are orders of
magnitude larger in code size and complexity compared to the older
generation of Datalog programs.

In terms of modern academic systems, the IRIS reasoner [59] is an
open-source general purpose Datalog execution engine with support for
optimizations, stratified and locally stratified negation. There are also
publicly available Datalog systems tailored for specific applications.
These include the Orchestra system for collaborative data sharing [92],
BDDBDD [24] for program analysis, the RapidNet [101] declarative
networking platforms, and the Bloom [16] platform for declarative pro-
gramming in the cloud.

In the commercial world, a major development is the emergence of
enterprise Datalog systems, most notably LogicBlox [4], Datomic [2],
Semmle [7], and Lixto [49]. Semmle and Lixto are targeted at specific
domains of program analysis and information extraction respectively,
while LogicBlox and Datomic aim to provide a general platform for
developing enterprise software.

The revival of Datalog in the new generation of applications is
driven by the increasing need for high-level abstractions for reason-
ing about and rapidly developing complex systems that process large
amounts of data, and are sometimes distributed and parallel. Datalog
provides a declarative interface that allows the programmer to focus
on the tasks (“what”), not the low-level details (“how”). A common
thread across these systems is the use of the Datalog language as a
declarative abstraction for querying graphs and relational structures,
and implementing iterations and recursions. Its clear and simple syntax
with well understood semantics aims to achieve the best of both worlds
– having a rich enough language to support a wide range of applica-
tions, yet at a high and concise level that makes rapid prototyping easy
for programmers without having to worry about low level messy details
related to robustness and parallelism. The high-level specifications also
make code analysis easier, for applying optimizations and for reasoning
about transactions and safety.

108 Introduction

1.1 Contributions and Roadmap

This survey paper aims to provide an accessible and gentle introduc-
tion to Datalog and recursive query processing to readers with some
basic background in databases (in particular, SQL and the relational
model). Given the wide range of research literature on Datalog span-
ning decades, we identify a “practical” subset of Datalog based on re-
cent advances in the adoption of Datalog. In particular, our survey
aims to cover the following:

• Language. Core Datalog syntax and semantics. (Chapter 2)

• Query processing. Recursive query processing techniques for
executing Datalog programs efficiently, using the bottom-up and
top-down evaluation strategies, such as the well-known semi-
naïve [22, 21] and Query/Subquery (QSQ) [67] evaluation strate-
gies. (Chapter 3)

• Incremental maintenance. Extensions to query processing
techniques in the previous chapter, to include mechanisms for
incrementally updating the materialized views of a Datalog pro-
gram, as the input data changes, without having to recompute
the entire Datalog program from scratch. (Chapter 4)

• Common extensions. Each application domain takes the core
Datalog language and then further customizes and extends the
core language and implementation techniques to meet its partic-
ular needs. Here, we discuss extensions to incorporate negation,
aggregation, arithmetic, uninterpreted functions, and updates, as
well as the query processing techniques to handle these exten-
sions. (Chapter 5).

The survey concludes in Chapter 6 with a brief survey of recent
applications of Datalog, in the domains of program analysis, declar-
ative networking, data integration and exchange, enterprise software
systems, etc.

1.2. Relationship with Previous Surveys 109

1.2 Relationship with Previous Surveys

Our survey serves as an entry point into several other survey papers
and books on Datalog. We briefly mention some of them:

• Bancilhon et al. [23] surveys and compares various strategies for
processing and optimizing recursive queries in a greater depth
compared to our survey.

• Ceri et al. [32] presents the syntax and semantics of Datalog along
with evaluation and optimization techniques for efficient execu-
tion. Extensions to the Datalog language, such as built-in predi-
cates and negation are also discussed.

• Ramakrishnan and Ullman [100] provides a high-level overview
of the Datalog language, query evaluation and optimizations, and
more advanced topics on negation and aggregation in a few pages.
This should be viewed as a “quick-starter” guide for someone
exposed to Datalog for the first time.

• Textbooks [12, 27, 33, 118, 36] cover some topics (e.g. language,
semantics, magic sets) in greater detail than our survey. Abite-
boul et al. [12] in particular is a widely used textbook geared
towards a database theory audience.

Overall, our survey is broader than Bancilhon [23], which focuses
primarily on query processing, and Ramakrishnan and Ullman [100],
which surveys Datalog systems (which are now more than a decade
old) with a brief discussion on query processing and optimizations. We
cover a breath of topics similar to the surveys [32, 88], but provide sig-
nificantly more details on systems issues related to query processing,
incremental maintenance, and modern applications. Compared to all
of the above surveys, we provide a more systems approach in presenta-
tion of classical topics, and discuss only extensions relevant to modern
applications.

110 Introduction

1.3 First Example: All-Pairs Reachability

We begin with a high level introduction to the Datalog language and its
basic evaluation strategy. As our first example, we consider a Datalog
program that computes all-pairs reachability, essentially a transitive
closure computation in a graph for figuring out all pairs of nodes that
are connected (reachable) to each other.

r1 reachable(X,Y) :- link(X,Y).
r2 reachable(X,Y) :- link(X,Z), reachable(Z,Y).
query(X,Y) :- reachable(X,Y).

The above two rules, named as r1 and r2, derive the reachable
nodes (i.e. reachable(X,Y) using facts about directly linked nodes (i.e.
link(X,Y)). Here, we use capital letters X and Y to signify that they are
variables in the domain of all the nodes. The output of interest in this
program, as denoted by the special predicate query(X,Y), is the set of
derived reachable facts. The input graph in this case can represent a
network of routers, and forms a basis for implementing network routing
protocols [80], web crawlers [81], and network crawlers [79].

Rule r1 expresses that node X is reachable from Y (i.e.
reachable(X,Y)) if they are directly linked. Rule r2 is a bit more
interesting, as it specifies the reachable relation in terms of itself:
(X,Y) are reachable from one another if X has a direct link to a node
(Z) that is reachable to Y. We refer to rules such as r2 as recursive
rules, since the reachable relation appears in both the rule body (right
of “ :- ”) and head (left of “ :- ”). Rule r2 is also a linear recursive
rule ,since reachable appears only once in the rule body.

a b c d

Figure 1.1: Example graph used for reachability computation.

We illustrate the execution of Datalog rules by evaluating the
reachable rules over the graph shown in Figure 1.1, which depicts a
network consisting of three nodes and four direct links. Thus, there are

1.3. First Example: All-Pairs Reachability 111

(initial base tuples)
link
X Y
a b
b c
c c
c d

(iteration 2)
reachable
X Y
a b
b c
c c
c d
a c
b c
b d
c d

(iteration 1)
reachable
X Y
a b
b c
c c
c d

(iteration 3)
reachable
X Y
a b
b c
c c
c d
a c
b d
a d

Figure 1.2: Tuples derived by the All-pairs Reachability program for each iteration.
New tuples derived in the current iteration that are not known in prior iterations
are shaded.

four initial entries (tuples) in link: link(a,b), link(b,c), link(c,c),
and link(c,d).

Intuitively, rule evaluation can be understood as the repeated ap-
plication of rules over existing tuples to derive new tuples, until no
more new tuples can be derived (i.e. evaluation has reached a fixpoint).
Each application of rules over existing tuples is referred to as an iter-
ation. This evaluation strategy is often times referred to as the naïve
evaluation strategy.

The evaluation of the reachability rules over the network in Fig-
ure 1.1 reaches a fixpoint in three iterations, as shown in Figure 1.2.
In iteration 1, rule r1 takes as input the initial link tuples, and use
that to generate 4 reachable tuples. These tuples essentially represent
all pairs of nodes reachable within one hop. In the next two iterations,
all reachable tuples generated in previous iterations are used as input
to rule r2 to generate more reachable tuples that are two and three

112 Introduction

hops apart. Iteration 4 (not shown in the figure) derives the same set
of tuples as iteration 3, and hence, a fixpoint is reached. Given that
no two nodes are separated by more than 3 hops, the recursive query
completes in 4 iterations.

As an optimization, instead of using all derived facts as input to
rules at each iteration, one can suppress the evaluation that uses only
tuples already learned in prior iterations when computing new tuples
the next iteration. For instance, when generating new facts in iteration
3, rule r2 will not evaluate for inputs reachable(b,c) and link(a,b),
since they have already been used in iteration 1. The intuitive descrip-
tion above corresponds loosely to the semi-naïve evaluation strategy,
which will be described in greater detail in Chapter 3.

Note that the above approach is a bottom-up evaluation technique,
where existing facts are used as input to rule bodies to derive new
facts. A fixpoint is reached when no new facts are derived. This is
also known as a forward-chaining style of evaluation. An alternative
approach used in Prolog [112] uses a goal-oriented backward-chaining
approach, starting from the goal (i.e. query), and then expanding the
rule bodies in a top-down fashion.

A top-down approach allows for an evaluation strategy that focuses
only on facts necessary for the goal. However, a bottom-up evaluation
approach used in Datalog allows us to draw upon a wealth of query
processing and optimization techniques to draw upon for doing the
computations efficiently even when datasets are too large to fit in main
memory. Moreover, as we show in Section 3.3, query optimization tech-
niques can optimize Datalog programs for bottom-up evaluation, to
avoid deriving facts not relevant to answering queries.

2
Language and Semantics

We present the formal syntax and semantics of Datalog in this chap-
ter. We restrict our presentation here to core Datalog, and include a
discussion on straightforward forms of negation with clear semantics.
We defer extensions (such as advanced negation and aggregation, arith-
metic, and functor) to Chapter 5.

2.1 Language

Datalog program. A Datalog program is a collection of Datalog rules,
each of which is of the form:

A :- B1, B2, . . . , Bn.

where n ≥ 0, A is the head of the rule, and the conjunction of
B1, B2, . . . , Bn is the body of the rule. The rule can be read informally
as “B1 and B2 and ... and Bn implies A”. In a Datalog program, we
adopt the logic programming tradition in using lowercase for constants
and predicate symbols and uppercase for variables.

113

114 Language and Semantics

Terminology. We provide some basic terminology used throughout
the paper to describe Datalog programs of the form shown above. A
term in Datalog is a constant or a variable. An atom (or goal) is a
predicate symbol (function) along with a list of terms as arguments.1
For example, in the above Datalog rule, A, B1, B2, . . . , and Bn stand
for atoms. An atom containing only constant arguments is called a
ground atom (atom).

We further divide predicate symbols into two categories: extensional
database predicates (EDB predicates), which correspond to the source
tables of the database, and intensional database predicates (IDB pred-
icates), which correspond to derived tables computed by Datalog pro-
grams. Entries in the source and derived tables are often referred to as
base and derived atoms respectively. In our presentation, we also include
in the core language the built-in comparison predicates =, 6=, <,>,≤,≥
which can be used to compare domain values.2

A database instance is a set of ground atoms. We use I, J,K, . . .
to denote database instances. A source database instance is a database
instance containing only EDB atoms. The active domain of a database
instance is the set of all constants that occur in the database. We
limit our analysis to core Datalog that considers only finite database
instances (i.e., database instances whose active domains are finite).

Example 2.1. Refer to the all-pairs reachability program P from Sec-
tion 1.3. link is an EDB predicate, while reachable is an IDB predi-
cate. The distinguished query predicate refers to the query rule, which
indicates that reachable predicate is the output of interest. Each atom
contains a number of arguments, e.g. the link(X,Y) atom has argu-
ments X and Y with an arity of 2. The source database instance in
this case refers to the initial link base table shown in Figure 1.2. The
derived table in this case is reachable.

The link table and the reachable table compromise a database
instance, where link table is the source database instance. The active

1Note that “term” and “atom” are used differently here than they are in Prolog.
2The core Datalog presented in more theoretical treatments of the subject [12]

usually does not assume an ordered domain or include built-in predicates, but for
practical applications, these features are taken for granted.

2.2. Semantics 115

domain corresponds to the set of nodes in the network (i.e., {a, b, c, d}
in the example).

A Datalog rule must also satisfy the range restriction property,
which says that every variable occurring in the head of a rule must
also occur in a predicate atom in the body, or be equivalent (modulo
the comparisons in the body) to a variable occurring in a predicate
atom in the body. Note that a rule may have an empty body (when
n = 0). In this case the body is considered unconditionally true, the
head must be ground (to satisfy range restriction), and we call such a
rule a fact rule.

Given a Datalog program with a collection P of rules, the Herbrand
base of P , denoted B(P), is the set of all ground atoms that can be
formed from the (EDB or IDB) predicates in P . A ground instance of a
rule is obtained by substituting all variables of the rule with constants.

2.2 Semantics

An appealing aspect of core Datalog is that its semantics can be de-
fined in three rather different but, as it turns out, equivalent ways. We
present an informal sketch of the three semantics in this section, em-
phasizing intuitions and deferring most formal details to the references.

2.2.1 Model-theoretic Semantics

The most purely “declarative” semantics of core Datalog is based on
the standard model-theoretic semantics of first-order logic. In this se-
mantics, we view Datalog rules as logical constraints. For example,
considering the all-pairs reachability example from Section 1.3, the two
rules correspond to the logical constraints

(∀X∀Y)(link(X,Y)→ reachable(X,Y))
(∀X∀Y ∀Z)(link(X,Y) ∧ reachable(Y, Z)→ reachable(X,Z))

Given a source database instance I and Datalog program P , a model
of P is a database instance I ′ that extends I (i.e., I ⊆ I ′) and satisfies
all the rules of P viewed as constraints. A given source instance and

116 Language and Semantics

program will in general have many models; however, among all the
models, it turns there is always one which is smallest.

Theorem 2.1 ([119]). For any core Datalog program P and source
database instance I, there exists a minimal model I ′ of P extending
I. That is, I ′ is a submodel of any other model I ′′ of P extending I.
Moreover, I ′ is polynomial in the size of I (for a fixed program P).

Proof. (Sketch.) The theorem follows immediately once one has es-
tablished two simple facts: (1) every Datalog program P and source
database instance I has at least one model—namely, the instance I ′
obtained by adding to I all atoms over the active domain of I—and this
model is, moreover, polynomial in the size of I (in fact, the exponent
of the polynomial is the maximum arity of any predicate symbols in
P); and (2) the intersection of two models is again a model.

According to the model-theoretic semantics, this minimal model is
the one that should be computed, and we denote it by P (I). It captures
our intuition that the result of evaluating a Datalog program should
satisfy all the rules of the program, while not having more atoms in it
than necessary.

Example 2.2. Refer to the all-pairs reachability program P from Sec-
tion 1.3, and suppose the database instance I contains the base facts
shown in Figure 1.2. Then P has infinitely many models containing I;
two examples are:

I1 =

link
X Y
a b
b c
c c
c d

,

reachable
X Y
a b
b c
c c
c d
a c
b d
a d

I2 =

link
X Y
a b
b c
c c
c d
b f

,

reachable
X Y
a b
b c
c c
c d
a c
b d
a d
b f
a f
g h

2.2. Semantics 117

Note that I1 is a subinstance of I2, which also contains I and satisfies
the rules of P , but contains some “extraneous” atoms (highlighted in
shade). In fact, I1 is the smallest model of P containing I.

2.2.2 Fixpoint-theoretic Semantics

The model-theoretic semantics of core Datalog gives a clear definition
of what a Datalog program should compute, but does not explain how it
might be computed. This question is given a more satisfactory answer
by the least fixpoint semantics. This turns out to be equivalent to the
minimal model semantics [119], but lends itself more directly to prac-
tical, bottom-up evaluation strategies (such as those to be described in
Section 3).

The least fixpoint semantics is based on the immediate consequence
operator TP for a Datalog program P , which maps database instances
to database instances. An atom A is an immediate consequence of a
Datalog program P and database instance I if A is a ground EDB
atom in I, or A :- B1, . . . , Bn is a ground instance of a rule in P , and
B1, . . . , Bn are in I. Then we define TP as follows: A ∈ TP (I) iff A is
an immediate consequence of P and I.

Example 2.3 (ht). For example, if I is the instance shown below (which
contains the ground atoms of the link EDB relation and an empty
reachable IDB relation), and P is the transitive closure program, then
applying the immediate consequence operator TP for P to I yields the
instance TP (I) shown below:

I =

link
X Y
a b
b c
c c
c d

,
reachable
X Y TP (I) =

link
X Y
a b
b c
c c
c d

,

reachable
X Y
a b
b c
c c
c d

Observe that reachable in TP (I) contains only atoms derived using
the first rule of the program, since reachable is empty in I hence the
second rule of the program does not (yet) produce any new atoms.

Note that the immediate consequence operator is monotone: when-
ever I ⊆ J , then TP (I) ⊆ TP (J). A fixpoint for TP is a database in-

118 Language and Semantics

stance I such that TP (I) = I. In general, there may be many fixpoints
for TP . A least fixpoint for TP containing I is a fixpoint that is a subset
of any other fixpoint for TP containing I. Intuitively, a least fixpoint
does not contain any “extraneous” atoms. One can show that such a
fixpoint always exists and agrees with the model-theoretic semantics:

Theorem 2.2. For any core Datalog program P and source instance I,
a least fixpoint of TP containing I exists and is equal to P (I).

The least fixpoint semantics leads to a constructive procedure for
evaluating Datalog programs. The idea is to repeatedly apply the im-
mediate consequence operator, starting with the source database in-
stance, until reaching a fixpoint. One can show that this process yields
precisely the least fixpoint, and moreover, it will be reached in a number
of steps that is polynomial in the size of the source database instance.
Since each application of TP can be computed in polynomial time in
the size of its input, this means that the least fixpoint can also be
computed in polynomial time.

Example 2.4. Refer again to the all-pairs reachability example from
Section 1.3, and assume again that the database instance I initially
contains the atoms shown in Figure 1.2. Then repeatedly applying
the immediate consequence operator yields the following database in-
stances:

TP (I) =
link(a,b) reachable(a,b)
link(b,c) reachable(b,c)
link(c,c) reachable(c,c)
link(c,d) reachable(c,d)

T 2
P (I) =

link(a,b) reachable(a,b) reachable(a,c)
link(b,c) reachable(b,c) reachable(b,d)
link(c,c) reachable(c,c)
link(c,d) reachable(c,d)

2.2. Semantics 119

T 3
P (I) =

link(a,b) reachable(a,b) reachable(a,c)
link(b,c) reachable(b,c) reachable(b,d)
link(c,c) reachable(c,c) reachable(a,d)
link(c,d) reachable(c,d)

T 4
P (I) =

link(a,b) reachable(a,b) reachable(a,c)
link(b,c) reachable(b,c) reachable(b,d)
link(c,c) reachable(c,c) reachable(a,d)
link(c,d) reachable(c,d)

Note that the last two instances are identical, i.e., T 3
P (I) = T 4

P (I), so
in this example we reach the least fixpoint after three iterations. Note
also that the least fixpoint is the same as the minimal model I1 from
Example 2.2.

2.2.3 Proof-theoretic Semantics

We close this section with a sketch of the third semantics for core Dat-
alog, which defines the result of a Datalog program to be precisely the
set of atoms that can be proved using the source database instance and
the rules of the program. For example, considering the same example
as above, a proof of the atom reachable(a,d) is as follows:

Atom Reason
1 link(c,d) given
2 reachable(c,d) using (1) and the first rule
3 link(b,c) given
4 reachable(b,d) using (2,3) and the second rule
5 link(a,b) given
6 reachable(a,d) using (4,5) and the second rule

A proof of an output atom can also be represented graphically as a
proof tree, such as the one shown in Figure 2.1. In a proof tree, leaf
nodes correspond to source atoms in the EDB instance, while internal
nodes correspond to derived IDB atoms and are labeled with the rule
used to derive them from the child atoms.

Note that the height of the proof tree for reachable(a,d) is 3, which
corresponds to the fact that the reachable(a,d) is derived in the third
iteration of applying the immediate consequence operator.

120 Language and Semantics

reachable(a,d)

link(a,b) reachable(b,d)

link(b,c) reachable(c,d)

link(c,d)

: rule 2

: rule 2

: rule 1

Figure 2.1: A proof tree

Theorem 2.3. The set of atoms provable from a source database in-
stance I using the rules of P is precisely P (I).

There are two basic strategies for generating proofs of output atoms.
In the bottom-up (backward chaining) approach, we view rules as “facto-
ries” (to borrow an apt phrase from [12]), and apply them repeatedly to
derive more and more proofs of atoms. In the top-down (forward chain-
ing) approach, we start with a candidate output atom (the goal) and
attempt to construct a proof of it, by recursively attempting to prove
other atoms from which the goal can be derived. Top-down strategies
are traditionally used in the evaluation of Prolog programs, but for
Datalog, bottom-up evaluation has traditionally been preferred. We
discuss both styles of evaluation further in Chapter 3.

2.3 Negation

We have seen that core Datalog programs are monotone: if I ⊆ J , then
P (I) ⊆ P (J). This means that core Datalog is incapable of express-
ing non-monotone queries, for example, the query which retrieves all
unreachable pairs of nodes in a graph.3 Since this is a major practical
shortcoming, we consider here extending core Datalog to incorporate
the use of negation in rule bodies (but not in rule heads). We denote
the resulting language by Datalog¬.

3In fact, it is known that there are even monotone, polynomial-time computation
not expressible in core Datalog [14].

2.3. Negation 121

Example 2.5. For example, to compute all pairs of disconnected nodes
in a graph, we would write

reachable(X,Y) :- link(X,Y).
reachable(X,Y) :- link(X,Z), reachable(Z,Y).
node(X) :- link(X,Y).
node(Y) :- link(X,Y).
unreachable(X,Y) :- node(X), node(Y), not reachable(X,Y).

While the intuitive meaning of the program in the example is clear,
a systematic treatment of Datalog¬ turns out to be trickier than one
might first expect, as the use of recursion through negation leads to
programs whose expected meaning is unclear.

Example 2.6. Consider the following Datalog¬ program:

p :- not q.
q :- not p.

This program has two minimal models, I1 = {p} and I2 = {q}, but
no unique minimal model. Also, each of these models is also a least
fixpoint, but there is no unique least fixpoint. Finally, following a proof-
theoretic approach, it is not clear how to prove either p or q (since
neither atom is logically entailed by the rules), so it seems that neither
atom should be in the output of the program. However, a database
instance containing neither atom fails to satisfy the rules of the program
viewed as logical constraints.

In light of examples such as the one above, many semantics for
Datalog¬ have been proposed over the years. We present here the
most straightforward and natural of these, based on a syntactic re-
striction called stratified negation which disallows recursion through
negation. We present stratified negation in two steps: first, we describe
the simpler semipositive Datalog¬, then we extend the idea to stratified
Datalog¬.

2.3.1 Semipositive Datalog

The idea in semipositive Datalog¬ is that, syntactically, negation ap-
pears only in rule bodies (as before) and furthermore only on EDB

122 Language and Semantics

predicates (but not on IDB predicates). This allows us to express the
set difference operation from relational algebra, for example, as well as
other queries of interest.

Example 2.7. Continuing with our graph example, we might be inter-
ested in computing pairs of nodes which are not directly linked, but
are still reachable from one another. This can be expressed in semipos-
itive Datalog¬ by adding a rule to the transitive closure program from
Chapter 1.3:
reachable(X,Y) :- link(X,Y).
reachable(X,Y) :- link(X,Z), reachable(Z,Y).
indirect(X,Y) :- reachable(X,Y), not link(X,Y).

We require also a safety condition which says that every variable in
the body of a rule must occur in at least one positive (i.e., not negated)
atom, as in the example above. This is required to ensure that the
results of programs are finite and that their results depend only on the
actual contents of the database. (In database theory, this is formalized
as the notion of domain independence [12].)

It is straightforward to extend the semantics of core Datalog to
semipositive Datalog¬, because we can think of a negated EDB pred-
icate not p as just another EDB predicate p (where the complement
is taken over the active domain of the EDB relations). Using the same
definition of model and immediate consequence operator TP as the core
Datalog, we have the following the theorem.

Theorem 2.4. Let P be a semipositive Datalog¬ program. Then for
any EDB database instance I:

(1) P has a unique minimal model J such that J agrees with I on the
EDB predicates.

(2) TP has a unique least fixpoint J such that J agrees with I on the
EDB predicates.

(3) The minimum model and least fixpoints are identical and can be
computed in polynomial time by applying TP repeatedly to I.

We denote by P (I) the semantics of a semipositive Datalog¬ pro-
gram according to either of the equivalent formulations above. Note,

2.3. Negation 123

however, the proof-theoretic model discussed in Section 2.2.3 does not
straightforwardly apply here: the question of whether there exists a
proof tree becomes complicated, involving the need to show the non-
existence of a proof subtree. As for core Datalog, evaluation of semi-
positive Datalog¬ programs can be done in polynomial time in the size
of the database instance.

2.3.2 Stratified Negation

The Datalog¬ program in Example 2.5 is not semipositive, because a
negated IDB predicate (not reachable) appears in the fifth rule. Nev-
ertheless, the desired semantics of the program seems clear. Conceptu-
ally, we want to proceed in two steps: first, compute the reachable and
node relations using the first four rules of the program; then, “freeze”
the contents of those IDB relations—viewing them now as EDB re-
lations, throwing out the first four rules—and compute unreachable
with the fifth rule, using the semipositive Datalog¬ semantics. This is
the basic idea behind stratified Datalog¬.

In the stratified semantics, we consider Datalog¬ programs that
can be written as a sequence P1, . . . , Pn of semipositive Datalog pro-
grams. At each step in the sequence, once we have computed the result
of that step, the IDB predicates in the step become EDB predicates
(“materialized views”) for the next step.

Definition 2.1. A stratification of a Datalog¬ program P is an ordered
partition of the IDB predicates in P into strata P1, . . . , Pn such that

(1) If A :- . . . , B, . . . is a rule in P , and A is in stratum Pi while B
is in stratum Pj , then i ≥ j;

(2) If A :- . . . , not B, . . . is a rule in P , and A is in stratum Pi while
B is in stratum Pj , then i > j.

A Datalog¬ program that admits a stratification is called stratifi-
able. For instance, the program in Example 2.5 is stratifiable, but the
program in Example 2.6 is not. We shall discuss a simple procedure for
checking whether a program is stratifiable in a moment.

Given a stratifiable Datalog¬ program P , the semantics is given by
a two-step procedure:

124 Language and Semantics

(1) Compute a stratification P1, . . . , Pn of P ;

(2) Evaluate P1, . . . , Pn in sequence as semipositive Datalog¬ pro-
grams, where the IDB predicates of Pi are considered as EDB
predicates for Pj , j > i.

A Datalog¬ program can have many stratifications, so the question
arises whether the above (non-deterministic) procedure defines the se-
mantics uniquely. However, it turns out that the particular choice of a
stratification does not matter:

Theorem 2.5 ([19]). If P1, . . . , Pn and P ′1, . . . , P ′m are stratifications of
the same Datalog¬ program P , then for any source database instance
I, evaluating P1, . . . , Pn and P ′1, . . . , P ′m on I yields the same result.

We can therefore talk about the result of evaluating P on I under
the stratified semantics, which we denote by P (I).

It remains to discuss how to compute a stratification of a Datalog¬
program P . This can be done via the device of a finite precedence graph
GP for P . The vertices in GP are the IDB predicates of P , and the edges
in GP are as follows:

• If A :- . . . B . . . is a rule in P , then (B,A) is an edge in GP ;

• If A :- . . . not B . . . is a rule in P , then (B,A) is an edge in
GP labeled ¬.

We can use the precedence graph to check for stratifiability:

Proposition 2.1. ADatalog¬ program P is stratifiable iff its precedence
graph GP has no cycle containing an edge labeled ¬.

We can also use the precedence graph to compute a stratification
for P , via the following procedure:

(1) Compute the strongly connected components of GP , and let these
define the strata for the program;

(2) Perform a topological sort of the strongly connected components
to determine an ordering of the strata.

2.3. Negation 125

Usually these two steps are performed by a single combined algorithm
(which was first introduced by Kosaraju in an unpublished paper),
and the time complexity of the algorithm is linear to the number of
predicates in the program.

Example 2.8. Consider the Datalog¬ program P from Example 2.5.
The precedence graph GP for this program is as follows (link is not
shown as a parent of reachable since it is an EDB):

node unreachable reachable¬

Note that although the graph has a cycle, the cycle does not go through
the edge labeled ¬, so the program is stratifiable. Observe that the
graph has three strongly connected components, each containing ex-
actly one vertex. Sorting them topologically yields, for example, the
stratification: (1) reachable; (2) node; (3) unreachable.

Next, consider the instance of link from Figure 1.2. After round
(1) of evaluation, we compute reachable as shown in Examples 2.2
and 2.4. In round (2) we compute node, and in round (3) we compute
unreachable using the instances of reachable and node from (1) and
(2) as EDB relations; the results include the following atoms:

node(a) unreachable(a,a) unreachable(c,b) unreachable(d,d)
node(b) unreachable(b,a) unreachable(d,a)
node(c) unreachable(b,b) unreachable(d,b)
node(d) unreachable(c,a) unreachable(d,c)

Once again, query evaluation of stratifiable Datalog¬ programs can
be done in time polynomial in the size of the source database instance.

Remarks on expressiveness. We have seen that stratified Datalog¬
strictly extends core Datalog in expressiveness by allowing one to ex-
press non-monotonic queries such as non-reachability, while at the same
time preserving guarantees of termination in polynomial time in the
size of the database instance. A natural question to ask is, what is

126 Language and Semantics

the precise expressiveness of stratified Datalog¬? A remarkable char-
acterization of its expressiveness was provided independently for least
fixpoint queries by Vardi [122], Immerman [58], and Livchak [74] (with
an explicit statement for Datalog¬ given by Papadimitriou [94]):

Theorem 2.6 (Immerman-Vardi). Stratified Datalog¬ captures the poly-
nomial time queries on ordered databases. That is, any query that can
be computed in polynomial time on an ordered database can be ex-
pressed by a stratified Datalog¬ program.

Thus, stratified Datalog¬ expresses exactly those queries which are
tractable from a theoretical perspective. Several remarks are in order
though. First of all, “queries” in the above is used in a precise and
somewhat narrow sense, and refers to a class of database transfor-
mations satisfying certain requirements, in particular genericity [12].
This rules out certain kinds of functions, in particular those involving
commonly-used aggregates like sum or count, which can be computed in
polynomial time and are certainly considered “queries” in practice, but
rely on information (such as arithmetical functions) not explicitly en-
coded as tables in the database. (We discuss extensions to incorporate
arithmetic in Section 5.3 and aggregates in Section 2.4.) Second, the re-
sult depends crucially on the assumption that queries have access to an
order predicate. In fact, it has been shown that, in the presence of or-
der on all the constants in the active domain, semipositive Datalog has
the same expressive power as stratified Datalog¬ . The question of the
existence of a query language capturing the polynomial time queries
on unordered databases is a longstanding open question in database
theory [72].

2.4 Aggregation

Many applications require the computation of various kinds of sum-
mary information over the database. For example, rather than return-
ing all pairs of connected nodes in a graph, one might be interested in
computing a summary giving the count of nodes reachable from a node.
This is an example of a query involving an aggregate function, in this

2.4. Aggregation 127

case, the count function. As we shall see, the query can be expressed
in Datalog extended with count as follows:

reachable(X,Y) :- link(X,Y).
reachable(X,Y) :- reachable(X,Z), link(Z,Y).
summary(X, count<Y>) :- reachable(X,Y).

Formally, an aggregate function is a mapping f from bags (multi-
sets) of domain values to domain values.4 Commonly-used aggregate
functions in databases include count, sum, max, min, and average.
More generally we fix a countable set F = {f1, f2, . . . } of aggregate
function symbols of various arities with associated aggregate functions.
(For practicality, we assume that each such aggregate function is com-
putable in polynomial time in the size of the input bag of domain
values.) An aggregate term is an expression f < t1, . . . , tk>where f is
an aggregate function symbol of arity k and t1, . . . , tk are (ordinary)
terms.

Datalog rules with aggregates have the same syntax as presented
in Section 2.1, but the head A may now contain both aggregate terms
and (ordinary) terms. We require additionally that a rule satisfy an
extended range restriction property:

• Every variable occurring in the head of a rule (including occur-
rences inside aggregate terms) must also occur in the body.

• No variable occurring in an aggregate term in the head of a rule
may also occur in an ordinary term in the head of a rule.

The variables in A occurring only in ordinary terms are called the
grouping variables. A ground instance of a rule with aggregate terms is
obtained by substituting all grouping variables with constants.

We illustrate the syntax by comparison with SQL.

Example 2.9. Consider the following SQL aggregate query over a table
sales(product,city,amount) recording product sales by city, which
aggregates the sales by product:

4Alternatively, aggregates can be formalized without resorting to bags by follow-
ing the approach of Klug [64].

128 Language and Semantics

select S.product, sum(S.amount)
from sales S
group by S.product;

In our syntax, this can be written as follows:
sales_by_product(Product, sum<Sales>) :- sales(Product, City, Sales).

Note that Product implicitly plays the role of the group by attribute in
the Datalog rule. The Datalog syntax presented here does not contain
an explicit group by construct.

The enhancement of Datalog with aggregate functions raises seman-
tic difficulties reminiscent of those arising with negation, if recursion
through aggregation is allowed. For instance, consider the program
p(X) :- q(X).
p(sum<X>) :- p(X).

evaluated on a source database containing facts q(1) and q(2). Intu-
itively, what should be the result? By the first rule, we infer p(1) and
p(2); using the second rule, we infer p(3). But then the second rule
applies again, so it seems we must infer p(6); then p(12), p(24), p(48),
and so on ad infinitum.

2.4.1 Stratified Aggregation

In order to safely rule out this and other such pathological cases, we
restrict our attention here to cases where aggregation does not occur
through recursion. In analogy with stratified negation, these are the
so-called aggregate stratified [90] programs.

Definition 2.2. A stratification of a Datalog¬ with aggregates program
P is an ordered partition of the IDB predicates into strata P1, . . . , Pn
such that conditions (1) and (2) of Definition 2.1 hold, along with

(3) If A :- . . . , B, . . . is a rule in P such that A contains an aggregate
term, and A is in stratum Pi while B is in stratum Pj , then i > j.

An aggregate stratification can be found, if one exists, via a straight-
forward extension of the precedence graph (Section 2.3.2) to record use
of aggregates in addition to negation.

2.4. Aggregation 129

To define a fixpoint-theoretic semantics of aggregate stratified pro-
grams, we extend the immediate consequence operator to deal with
aggregate functions as follows. Consider an instance I and a program
P , and let r be a ground instance of a Datalog rule in P with aggregates
of the form

R(t1, . . . , tn) :- B1, . . . , Bn.

Let Θ be the set of all substitutions θ of (non-grouping) variables of r
by constants such that θB1, . . . , θBn are in I. Then a fact R(c1, . . . , cn)
is an immediate consequence of the rule for instance I if (a) Θ is non-
empty, and (b) the following conditions hold for 1 ≤ i ≤ n:

• If term ti is a constant, then ti = ci.

• If term ti is an aggregate term f(u1, . . . , uk), we have

ci = f({(θu1, . . . , θuk) | θ ∈ Θ}),

where the curly braces above indicate a bag rather than a set.

Then, we define TP as before: A ∈ TP (I) iff A is an immediate conse-
quence for some ground instance of a rule in P for I.

Finally, having extended the immediate consequence operator
to work with aggregate-stratified programs, we define the fixpoint-
theoretic semantics exactly as for stratified Datalog¬ (Section 2.3.2).
Using the assumption that aggregate functions are polynomial time
computable, it is easy to show that for any fixed query in this lan-
guage, program evaluation can be done in time polynomial in the size
of the database.

In addition to the fixpoint-theoretic semantics, one can give a natu-
ral model-theoretic semantics for aggregate stratified Datalog¬; see the
paper by Mumick et al. [90] for details.

2.4.2 Aggregation Optimizations

Consider the following aggregate stratified Datalog program which
computes the shortest paths in a network routing graph, along with
their costs:

130 Language and Semantics

path(X,Y,[X,Y],C) :- link(X,Y,C).
path(X,Y,P,C) :- path(X,Z,P1,C1), link(Z,Y,C2), P = [P1,Y], C = C1 + C2.
shortest_path_len(X,Y,min<C>) :- path(X,Y,P,C).
shortest_path(X,Y,P,C) :- shortest_path_len(X,Y,C), path(X,Y,P,C).

A naïve execution of the program computes all possible paths, even
those paths that do not contribute to the eventual shortest paths. Even
worse, if the routing graph has cycles, then the set of all possible paths
is infinite, and the fixpoint execution will not terminate.

These problems can be avoided with an optimization technique
known as aggregate selection [115]. Intuitively, by applying aggregate se-
lections to this program, each node only needs to propagate the current
shortest paths for each destination to its neighbors. This propagation
can be done whenever a shorter path is derived.

In brief, aggregate selection is performed via a syntactic rule trans-
formation in the spirit of magic sets rewriting, along with a modified
runtime evaluation strategy. For the shortest paths example, the rewrit-
ing replaces the path predicate in the rule body of the second recursive
rule with shortestPath:

path_s1(X,Y,[X,Y],C) :- link(X,Y,C).
path_s1(X,Y,P,C) :- path_s1(X,Z,P1,C1), link(Z,Y,C2), P = [P1,Y], C=C1+C2.
shortest_path_len(X,Y,min<C>) :- path_s1(X,Y,P,C).
shortest_path(X,Y,P,C) :- shortest_path_len(X,Y,C), path_s1(X,Y,P,C).
Selections s1 = path_s1(X,Y,P,C) : groupby(path_s1(X,Y,P,C),[X,Y],min(C))

The predicate path_s1 denotes the original path predicate with
aggregate selections applied. In essence, instead of deriving path tuples
for every newly derived path, one only needs to derive a new path in the
recursive case whenever the shortestPath between any two nodes are
updated. This is achieved by applying at runtime a modified evaluation
strategy, that uses the selection s1 (expressed as the last rule) as a
filter for removing derived path tuples (grouped by [X,Y]) that do not
change the current minimum (C) for each group. Note that aggregate
selections optimization not only reduces the number of derivations,
but it also has the nice effect of also ensuring termination, since path
cycles are avoided by pruning away paths that do not contribute to the
shortest paths.

3
Recursive Query Processing

Recursive query processing methods can be broadly categorized as ei-
ther bottom-up methods, or top-down methods. Bottom-up methods
answer a query by applying all rules of a program to ground tuples,
deriving tuples that satisfy rule bodies into predicates in rule heads.
The minimal model for the given program and ground tuples is explic-
itly materialized as a new database instance; the answer to the query is
then obtained through a simple select/project/join operations over the
materialized database instance. In contrast, top-down methods answer
a query by pushing selection criteria (i.e. constants) from the query
down into rules that may answer the query (i.e. rules deriving into
predicates being queried), creating more (sub)queries from the atoms
of these rules’ bodies; the subqueries are in turn answered in a sim-
ilar, top-down fashion. In this chapter, we discuss one representative
method from each category: the bottom-up method of semi-naïve, and
the top-down method of query/subquery (QSQ).

We illustrate the differences between these methods using the fol-
lowing running example, which is similar to the earlier reachability
example presented in Section 1.3. Here, the EDB predicate link is pop-
ulated with tuples link(a,b), link(b,c), link(c,c), link(c,d):

131

132 Recursive Query Processing

r1 reachable(X,Y) :- link(X,Y).
r2 reachable(X,Y) :- reachable(X,Z), link(Z,Y).
query(Y) :- reachable(b,Y).

As before, the distinguished query predicate (output of interest) is
the reachable table. However, unlike the earlier example, the output
is bounded to the constant b, indicating that we are only interested
in reachable tuples for node b. As we will see later in this paper,
restricting the output set has implications on the relative overheads of
using bottom-up vs top-down evaluation techniques.

3.1 Bottom-up Evaluation

The least fixpoint semantics of Datalog (2.2) gives rise to a simple
bottom-up evaluation algorithm: one can perform the evaluation in it-
erations starting from a base data instance containing only EDBs; in
each iteration, all rules are evaluated, deriving tuples satisfying rule
bodies (through immediate consequence operator TP); the iterative
evaluation stops when no new tuples can be derived. This method of
evaluation is referred to as the naïve method. Example 2.4 illustrates
the result of applying the naïve method on our running example, where
the evaluation terminates in four iterations1.

Figure 1.2 also demonstrates that many tuples are derived more
than once using the naïve method: e.g. {(a,b), (b,c), (c,c),
(c,d)} are derived four times, {(a,c), (b,d)} twice, etc. Such redun-
dant derivations arise from the use of the full content of the predicates
in each iteration, regardless of whether the content would generate ad-
ditional tuples (with respect to the previous iteration). The semi-naïve
method [21] aims to minimize the number of redundant derivations.

The intuition behind the semi-naïve method is that in each itera-
tion, one should avoid repeat the computation that has already been
done in previous iterations. Indeed, only the new tuples derived in the
previous iteration can lead to the derivation of more tuples. Thus, the

1It is easy to see that the content of reachable in each iteration corresponds ex-
actly to the content of reachable in each application of the immediate consequence
operator described in 2.4.

3.1. Bottom-up Evaluation 133

evaluation in each iteration should focus on the newly derived tuples
(called deltas) from the previous iteration. Additionally, it should com-
pute in an efficient manner these deltas for the current iteration, for the
use in the next iteration. The content of a predicate for any iteration,
is simply the union of its content from the previous iteration, and the
deltas from the current iteration.

Next, we show steps to systematically derive rules that use and
compute deltas, and outline the semi-naïve algorithm. We apply semi-
naïve to the reachability example to illustrate concretely the reduction
in redundant derivations. We close the section by discussing an opti-
mization of semi-naïve, that applies to linearly recursive programs.

3.1.1 The Semi-Naïve Method

We assume the following general form for a Datalog rule, where p is
mutually recursive with IDB predicates p1 through pn, and q1 through
qm are EDB’s and built-in comparison predicates:

p :- p1, . . . , pn, q1, . . . , qm.

We use p[i] (and p[i]
j) to denote the set of tuples in p (respectively,

pj) at the beginning of the ith iteration, starting from 0. We use δ(p)[i]

to denote the new tuples generated in iteration i (that is, for every
i, p[i+1] = p[i] ∪ δ(p)[i]). δ(p)[i] is used as input to iteration i + 1. For
example, p[0] is the empty set; and δ(p)[0] is those tuples derived by
rules that only use EDB predicates in their bodies.

Applying the above definitions, it is easy to see that the following
rule computes p[i] for all i > 0:

p[i+1] :- p
[i]
1 , . . . , p

[i]
n , q1, . . . , qm.

By applying p[i+1] = p[i] ∪ δ(p)[i]) to p[i]
1 to p[i]

n , we have

p[i+1] :- (p[i−1]
1 ∪ δ(p1)[i−1]), . . . , (p[i−1]

n ∪ δ(pn)[i−1]), q1, . . . , qm.

Distributing ∪ over the conjunction, the following holds for p[i+1] in
Figure 3.1. Here, ∆(p)[i] is an over-approximation of δ(p)[i]: δ(p)[i] :=
∆(p)[i]−p[i]. In order to avoid redundant tuples, δ(p)[i] is used in place of

134 Recursive Query Processing

the true delta ∆(p)[i] as input to the next iteration. Figure 3.2 presents
the pseudocode for semi-naïve algorithm. Each repeat-until loop repre-
sents one iteration, where evaluate involves running the delta rules in
Figure 3.1 at each iteration. Interested readers should refer to [21] for
proofs of correctness.

p[i+1] = p[i] ∪∆(p)[i]

∆(p)[i] :- δ(p1)[i−1], p
[i−1]
2 , . . . , p

[i−1]
n , q1, . . . , qm.

∆(p)[i] :- p
[i]
1 , δ(p2)[i−1], p

[i−1]
3 . . . , p

[i−1]
n , q1, . . . , qm.

. . .
∆(p)[i] :- p

[i]
1 , . . . , p

[i]
n−1, δ(pn)[i−1], q1, . . . , qm.

Figure 3.1: Delta rules for semi-naïve evaluation

Figure 3.3 shows the tuples of reachable being computed using the
semi-naïve algorithm, as well as the deltas. Note that the final set of
reachable tuples are exactly the same as that in Figure 1.2. However,
the semi-naïve method reduces the number of tuples derived compared
to the naïve method. For instance, reachable(b,c) is derived twice
(in δ(reachable)[0] and ∆(reachable)[1]). However, it is used exactly
once (δ(reachable)[1]) for triggering the delta rules in iteration 1.
Rules with negation. When the semi-naïve algorithm is applied to
Datalog programs with stratified negation, a predicate would only de-
pend on a negated predicate that is computed in a lower strata. We
can thus treat negated predicates as EDB’s.

3.1.2 Semi-Naïve for Linearly Recursive Datalog

It is worth noting that the recursive rule in our example is linear :
reachable appears exactly once in the body of the recursive rule r2. For
linearly recursive rules, the computation of ∆(p)[i+1] (and consequently,
δ(p)[i]) can be simplified.

Let the following be the general form of a linearly recursive rule,
where p is only mutually recursive with one predicate (pj) that appears
in the body of this rule:

p :- p1, . . . , pj , . . . , pn.

3.2. Top-down Evaluation 135

Algorithm 3.1.1: Semi-Naïve()

for each IDB predicate p

do
{
p[0] := ∅
δ(p)[0] := tuples produced by rules using only EDB′s

i := 1
repeat
p[i] := p[i−1] ∪ δ(p)[i−1]

evaluate ∆(p)[i]

δ(p)[i] := ∆(p)[i] − p[i]

i := i+ 1
until δ(p)[i] = ∅ for each IDB predicate p

Figure 3.2: Pseudocode for semi-naïve evaluation

Applying the same definitions and rewrites as shown in Sec-
tion 3.1.1, we can show that the semi-naïve algorithm can be used
with the following definitions of ∆(p)[i] and δ(p)[i]:

∆(p)[i] :- p
[i−1]
1 , . . . , δ(pj)[i−1], . . . , p

[i−1]
n−1 , q1, . . . , qm.

δ(p)[i+1] :- δ(pj)[i], q1, . . . , qm.

3.2 Top-down Evaluation

While semi-naïve minimizes the redundant derivation of the same tu-
ples across multiple iterations, it does not minimize the derivation of
tuples that are not necessary in answering a query. For instance, the
tuple reachable(a,b) does not participate in answering the query
reachable(b,Y) in any way. Top-down methods aim to derive only
those tuples relevant to the query, by starting the evaluation from the
query itself, and pushing selection criteria (i.e. constants) from the
query into rules. One can think of top-down evaluation as the search
for proof trees for the queries, per the proof-theoretic semantics of Dat-
alog described in Section 2.2. The tuples derived by top-down methods
are exactly those that appear in the proof tree.

In this section, we discuss the representative top-down method,

136 Recursive Query Processing

Initialization
reachable[0] := ∅
δ(reachable)[0] := {(a, b), (b, c), (c, d), (c, c)}

Iteration 1:
reachable[1] := {(a, b), (b, c), (c, d), (c, c)}
∆(reachable)[1] := {(a, c), (b, d), (b, c), (c, c)}
δ(reachable)[1] := {(a, c), (b, d)}

Iteration 2:
reachable[2] := {(a, b), (b, c), (c, d), (c, c), (a, c), (b, d)}
∆(reachable)[2] := {(a, d)}
δ(reachable)[2] := {(a, d)}

Iteration 3:
reachable[3] := {(a, b), (b, c), (c, d), (c, c), (a, c), (b, d), (a, d)}
∆(reachable)[3] := ∅
δ(reachable)[3] := ∅

Figure 3.3: The computation of reachable using the semi-naïve algorithm

Query/Subquery (QSQ)[67]. We first provide an intuition for QSQ by
showing how it answers the query in our running example. We then
describe key components of a (sub)query, and outline the iterative QSQ
algorithm2.

3.2.1 Query-Subquery By Example

QSQ evaluation of a query begins by unifying the distinguished query
atoms with head atoms of rules. We refer to rules whose head atoms
unify with the distinguished query atoms as candidate rules. In our
running example (shown in Section 1.3), both r1 and r2 are candidate
rules. Unification introduces constant bindings for variables in the can-
didate rules. For instance, unifying reachable(b,Y) with the head of
r1, reachable(X,Y), introduces the binding b for variable X. We denote
this binding as {X 7→ b}. We say that the first argument of reachable,
in this context, is bound. We refer to the passing of binding information

2Readers can find the description of recursive QSQ in Chapter 13 of [12]

3.2. Top-down Evaluation 137

through unification as top-down information passing.
Next, binding information is pushed into the bodies of candidate

rules, such that subqueries can be constructed from atoms in the bod-
ies. For instance, pushing {X 7→ b} into the body of rule r2, results
in the subquery link(b,Z). The evaluation of this subquery conse-
quently introduces more binding information, {Z 7→ c}. When creating
subqueries from the subsequent body atom, reachable(Z,Y), bind-
ing information from both the head atom, as well as the evaluation
of the subquery link(b,Z), is used. The resulting subquery is thus
reachable(c,Y). We refer to the passing of binding information from
atom to atom in the same rule body as sideways information passing3.

Subqueries are answered similarly, by unifying them with candidate
rules, possibly resulting in more subqueries. When all subqueries per-
taining to a rule body are answered, QSQ produces an answer set for
the (sub)query pertaining to the rule head. For instance, the subquery
in r1 ’s body, link(b,Y) can be answered immediately by looking up
the tuples in EDB link. This produces the tuple {(b,c)}, which is
placed in the answer set for query reachable(b,Y).

The production and answering of queries/subqueries repeat until
no more tuples are derived into answer sets, and no more subqueries
are produced.

3.2.2 Query-Subquery Evaluation

There are two key components in the construction of a (sub)query:

• A predicate where certain arguments are bound. The bounded-
ness of an argument indicates whether it should receive binding
informations—i.e., be replaced by constants—in the construction
of subqueries. For every predicate P , we use an adorned predicate,
P γ , to represent P with certain arguments bound.

• The binding information passed down, or sideways, into the
bounded arguments. We use R to represent binding relations.

3Sideways information passing is exploited in an optimization strategy for
bottom-up evaluation, called magic sets. We discuss magic sets in detail in Sec-
tion 3.3.

138 Recursive Query Processing

Essentially, R is a set of all possible bindings for the bounded ar-
guments in P γ . For instance, {{X 7→ b, Z 7→ c}, {X 7→ b, Z 7→ a}}
represents two possible bindings for X and Z.

Together, 〈P γ , R〉 represent a set of subqueries to be answered.
These subqueries are constructed by replacing the bounded arguments
of P γ with constants, according to the binding information in R. Next,
we discuss how adorned predicates and binding relations are computed;
we then show their use in QSQ evaluations.

Adorned predicates. Given a predicate P , we refer to P γ as the
adorned version of P [117]. γ is a sequence of b’s and f ’s, where the
length of γ is exactly the arity of P . Thus, each argument of P has
a corresponding b or f in γ. A b denotes that the corresponding ar-
gument of P is bound—i.e. it is expecting binding information—and f
denotes otherwise. For example, reachablebf is an adorned version of
reachable, and expects bindings for its first argument.

Furthermore, we rewrite rules deriving P into adorned rules that
derive P γ . The rewritten rules are used to determined how subqueries
should be constructed, in order to answer queries 〈P γ , R〉.

To get an adorned rule, every atom in the original rule body is
rewritten to refer to an adorned predicate. The adornment is deter-
mined as follows: an argument position is bound if it is a constant, a
variable bound in the rule head as indicated by the adornment of the
head atom, or a variable bound by some atom to its left in the rule
body. Intuitively, this corresponds to passing the binding information
from the rule head to the rule body. For instance, the adorned rules
deriving reachablebf are as follows:

ar1 reachablebf (X,Y) :- linkbf (X,Y).
ar2 reachablebf (X,Y) :- linkbf (X,Z), reachablebf (Z,Y).

Binding relations. There are two types of binding information in
QSQ: bindings passed top-down from queries to the head of rules
through unification, and bindings passed sideways from atom to atom
in the body of the same rule.

3.2. Top-down Evaluation 139

We use input relations to represent binding information passed
top-down. The input relation input_P γ(V) denotes binding rela-
tions passed down into the head of adorned rules deriving P γ . V
is a set of bounded arguments in P γ . Intuitively, 〈P γ , input_P γ〉
represent subqueries created through unification. For instance,
input_reachablebf (X) is the input relation for rules ar1 and ar2, and
can be used to create subqueries from reachablebf (X,Y), by replacing
X with constants.

We use supplementary relations to represent binding information
passed sideways. The relation supij(V) denotes binding information
passed sideways into the jth atom (starting from 0) in the body of
rule ari, where V is a set of arguments that are (1) already bounded
(by the atoms before j), and (2) later referenced (by the head atom
or body atoms on or after j). Intuitively, supij(V) contains binding
information used to construct subqueries from the jth atom. For in-
stance, for ar2, we have sup2

0(X), which provides the constant bindings
for X that can be used to construct subqueries from linkbf (X,Z), and
sup2

1(X,Z) for constructing subqueries from reachablebf (Z,Y) (since
Z is now bounded by linkbf (X,Z)).

For a rule containing n atoms in the body, the supplementary rela-
tion supin(V) denotes the resulting binding information from evaluating
all subqueries constructed from the rule body. Thus, supin(V) contains
the answer set for the head query. For example, for rule ar2 in our ex-
ample, relation sup2

2(X,Y) contains the answers to reachablebf (X,Y).
For every adorned predicate P γ , let ans_P γ be answers to queries

constructed using P γ . ans_P γ is thus populated using supin(V), for all
rules i deriving into P γ .

3.2.3 Steps of QSQ Evaluation

There are four steps of QSQ evaluation:
Step 1. The evaluation begins by unifying the query atom with
adorned rules. The binding of arguments in the query atom dictates
which adorned rules the atom can unify with. The input relation for
the unified predicate is populated with bindings produced by a success-
ful unification.

140 Recursive Query Processing

Step 2. The 0th supplementary relation for a candidate rule is com-
puted by projecting out the necessary variables from the input relation.
Step 3. The production and evaluation of subqueries, and the compu-
tation of subsequent supplementary relations, are interleaved.

(a) Let the jth atom in rule i’s body be P γ(V). We construct sub-
queries from 〈P γ , supij(V ′)〉, By substituting variables in P γ(V)
with constants from supij(V ′).

(b) A subsequent supplementary relation supij+1(V) is computed by
joining the answer set of the jth atom, with supij(V ′).

(c) As subqueries are constructed from 〈P γ , supij(V ′)〉, it is necessary
to pass the binding information from supij(V ′s) to input_P γ , such
that these subqueries can be evaluated using these same evalua-
tion steps (notably, step (1) requires that input_P γ contains the
appropriate bindings). Thus, we compute input_P γ by projecting
out the appropriate variables from supij(V ′s).

Step 4. The final supplementary relation in a rule is used to compute
the answers for the rule head.

Example 3.1. We next illustrate the steps of QSQ by applying them
to answer query reachable(b,Y).
Step 1: First, we obtain the input relation, input_reachablebf (X), by
unifying the query with the head of both candidate rules. This results
in an input relation that contains the binding {{X 7→ b}}.
Step 2: Next, we obtain the supplementary relations sup1

0(X) and
sup2

0(X) by projecting out the necessary (and only) variable from the
input relation. In this case, both supplementary relations contain a
single binding relation {{X 7→ b}}.
Step 3. There supplementary relations allow us to obtain subgoals and
subsequent supplementary relations.

(a) For rule ar1, we substitute the bound variable in linkbf (X,Y) with
sup1

0(X), and obtain the subgoal link(b,Y). The answer set for
link(b,Y) of rule ar1 is {{X 7→ b, Y 7→ c}}, which directly goes

3.3. Magic Sets 141

into the answer set for ans_reachable(X,Y) in step 4. For rule
ar2, we similarly obtain the subgoal link(b,Z). The answer set
for link(b,Z) is used to produce the next supplementary relation,
sup2

1(Z), which contains {{Z 7→ c}}.
(b) We can now use sup2

1(Z), and reachablebf (Z,Y), to produce the
next subgoal: reachable(c,Y).

(c) Since we used sup2
1(Z) to create a new subgoal, we need to simi-

larly enhance input_reachablebf (X) with the same binding infor-
mation (Step 3c). After this step, input_reachablebf (X) contains
{{X 7→ b}, {X 7→ c}}. The subquery reachable(c,Y) can then be
evaluated using the same steps going back to Step 2. The result
would be used to enhance ans_reachable(X,Y) in step 4.

Step 4. Use ans_reachable(X,Y) generated in Step 3 as answers for
the rule head.

The QSQ method can be implemented iteratively, by simply iter-
ating over the above 4 steps until no more subqueries are constructed,
and the answer set for all predicates no longer change. An alternative
method is recursive QSQ. Interested readers may consult [23] for an
exposition of these algorithms.

3.3 Magic Sets

Top-down evaluation methods (in particular QSQ) that derive only
facts relevant for answering queries, by starting the evaluations from the
queries, pushing binding information through the evaluation of rules.
There has been a lot of research on allowing bottom-up evaluation
methods to take advantage of the information in queries. Magic sets
[25] is a family of rewrite techniques that, given a Datalog program P ,
produces another Datalog program P ′ where, for any instance I and
query q, the answer for q computed by P ′ is exactly that computed
by P . Furthermore, the semi-naïve method, when applied to P ′, de-
rives exactly the same set of facts derived by QSQ. The insight behind
a magic sets rewrite is that binding information from queries can be
represented as predicates; these predicates can be inserted into rule

142 Recursive Query Processing

bodies, forcing joins that will constrain the facts derived in a bottom-
up evaluation of the rule. There is a strong connection between magic
sets techniques and QSQ: the same binding information represented by
input and supplementary relations in QSQ, are precisely the informa-
tion needed to constrain bottom-up evaluations in magic sets. The key
is to derive these relations using (bottom-up evaluated) Datalog rules,
and use them to pass binding information sideways into rule bodies,
removing the need for top-down information passing.

3.3.1 Basics of a Magic Sets Rewrite

There are three steps common to all magic sets rewrites:

(1) Rewrite rules into their adorned versions, where the adornments
needed are determined by queries.

(2) Define binding predicates and rules that derive into them.

(3) Rewrite adorned rules by adding binding predicates in rule bodies.

We next describe these three steps informally, focusing on intuition
rather than formal notation. We refer interested readers to [25] for a
more formal treatment. We illustrate the application of magic sets to
the same example we used to illustrate QSQ (Section 3.2.2), to show
the strong correspondence between the two methods:

r1 reachable(X,Y) :- link(X,Y).
r2 reachable(X,Y) :- link(X,Z), reachable(Z,Y).
query(Y) :- reachable(b,Y).

Adorned rules. The rewrite to produce adorned rules follows the same
rules as those described in Section 3.2.2. Note that a rule deriving into
a predicate of arity n has 2n adorned versions. It is not necessary to
produce all adorned rules; they can be produced by need based on the
queries being answered. In our example, since the query only calls for
reachablebf , we produce the following adorned rules:

ar1 reachablebf (X,Y) :- linkbf (X,Y).
ar2 reachablebf (X,Y) :- linkbf (X,Z), reachablebf (Z,Y).

3.3. Magic Sets 143

Deriving binding predicates. Recall that two types of relations are
used to constrain the top-down evaluation of this program: the in-
put relation input_reachablebf (X), and the supplementary relations
supij(V) for every atom j in rule i. A magic sets rewrite defines these
supplementary relations as predicates derived using Datalog rules.

First, the input relation is initialized with constants from queries:

m1 input_reachablebf (b).

Next, we define rules for supplementary relations. As we described
in Section 3.2.2: the 0th supplementary relation is computed by project-
ing out the appropriate variables from the input relation; a subsequent
supplementary relation is computed by joining the supplementary rela-
tion and atom to its left in the rule body. For our example, the following
rules derive the supplementary relations:

m2 sup1
0(X) :- input_reachablebf (X).

m3 sup2
0(X) :- input_reachablebf (X).

m4 sup2
1(X,Z) :- sup2

0(X), link(X,Z).

Rewrite rules using binding predicates. We now rewrite adorned
rules, such that the jth atom in the body of rule i is preceded by
the supplementary predicate supij(V). The intuition is that the tuples
in supij(V) constrain the evaluation of the rule by joining with the
jth atom, producing exactly those facts needed to derive the neces-
sary facts into the rule head. The following are the rewritten rules for
reachablebf :

m5 reachablebf (X,Y) :- sup1
0(X), link(X,Y).

m6 reachablebf (X,Y) :- sup2
0(X), link(X,Z), sup2

1(X,Z), reachablebf (Z,Y).

Of course, the evaluation of the predicate for the jth atom itself
needs to be properly constrained. This is done by populating its input
predicate, using supij(V) (Note the correspondence between the rule
below to step 3c of QSQ):

m7 input_reachablebf (X) :- sup2
1(X,Z).

144 Recursive Query Processing

Together, rulesm1 throughm7 constitute a rewritten version of our
original program. Applying the semi-naïve algorithm to this rewritten
program, it is easy to see that only facts relevant to the query, i.e.
reachable(b,Y), are derived.

Note that the input and supplementary predicates are also referred
to as magic predicates in the literature. We were inspired by [12] to
keep the presentation of magic sets and QSQ similar, to emphasize
their close connection.

3.3.2 Effective Applications of Magic Sets

In applying a magic sets rewrite to a Datalog program, there can be
many different strategies in the definition of binding predicates and
their use in adorned rules. For instance, in the example shown in the
previous section, since sup2

1(X,Z) is computed by joining sup2
0(X) and

link(X,Z), it is an equally correct rewrite to replace m6 with the
following rule:

m6’ reachablebf (X,Y) :- sup2
1(X,Z), reachablebf (Z,Y).

Yet another strategy is to reorder the atoms in the original rule bod-
ies, before even applying the rewrite steps. For instance, the following
version of r2 would have yielded a rather different rewrite result:

reachable(X,Y) :- reachable(Z,Y), link(X,Z).

These strategies are referred to as sideways information passing
strategies, or SIPS. A poorly chosen SIPS not only does not improve
the evaluation performance of a program; it can degrade it through the
additional cost of computing binding predicates and joining them in
rule bodies.

To see concretely the effect of a poorly chosen SIPS, consider the
example program in Figure 3.4, drawn from a program analysis appli-
cation [108]. The program queries for all subtypes of Cloneable that
do not declare a method clone. Transformed as is, no binding informa-
tion is available for hasSubtypePlus. Yet the rules for hasSubtypePlus
are the most costly, as they compute the transitive closure of the
hasSubtype relation. Ideally, we would like to only compute what is

3.3. Magic Sets 145

r1 query(C) :- hasSubtypePlus(Cloneable,C),
not declaresMethod(C, "clone"),
type(Cloneable), hasName(Cloneable, N), N = "Cloneable".

r2 hasSubtypePlus(SUPER,SUB) :- hasSubtype(SUPER,SUB).
r3 hasSubtypePlus(SUPER,SUB) :- hasSubtypePlus(SUPER,MID),

hasSubtype(MID,SUB).
r4 hasName(C,N) :- className(C, N), interfaceName(C, N).
r5 declaresMethod(C,Name) :- method(M,C), methodName(M,Name).

Figure 3.4: Program to be optimized using magic sets

necessary for this query, i.e. those subtypes of Cloneable. Furthermore,
the computation of declaresMethod is not meaningfully constrained,
either. Its binding predicate would contain the entire first column of
hasSubtypePlus. Indeed, the cost of evaluating the magic sets rewrit-
ten version of this program as is would have no benefit over evaluating
the original program. It would most likely cause performance degrada-
tion, as the rules for binding predicates would also need to be evaluated.

The key in choosing an effective SIPS is to maximize the selectivity
of the binding predicates, while minimizing the cost of their computa-
tion. In the remainder of this section, we discuss three factors in effec-
tively choosing a SIPS, and show concretely how they help in achieving
a performance-enhancing rewrite of the program in Figure 3.4:

• Determining the order of atoms in queries and rules, such that
expensive computations can be effectively constrained.

• Choosing the atoms used to compute binding predicates, such
that their computation cost is justified by their selectiveness.

• Choosing which variables are considered bound in each atom (i.e.
the variables stored in binding predicates), to minimize the size
of (and thus the cost of materializing) binding predicates.

Determining the order of atoms. There is a strong relationship be-
tween choosing an atom ordering as part of a SIPS, and choosing a
join ordering for query evaluation: both attempt to minimize the cost

146 Recursive Query Processing

of evaluation by passing selective binding information through vari-
ables into the subsequent atoms. This connection has been explored
by several magic sets implementations (e.g., [109, 89, 108]). We discuss
two representative approaches: one makes use of runtime information;
the other is a static approach, independent of database runtime.
Runtime Approach. Seshadri et.al.[109] proposes a runtime approach in
which the ordering of atoms is optimized for the purpose of computing
binding predicates for magic sets rewrites. The key idea behind this
approach is that, computing a binding predicate, and using it in the
body of a query, can be modeled as a relational operator. The query
optimizer can choose to incorporate this operator into its plan if it
lowers the overall cost of query evaluation.

The relational operator “filter-join” is introduced for this purpose.
A filter-join of two relations, R filter-join S, means that the join at-
tributes of R are projected out into a “filter” relation; only those tuples
of S that join with the filter relation are then joined with R. Thus, a
filter-join represents the creation of a binding predicate, and adding
the binding predicate to a query/rule body to constrain its evaluation.

If the query plan determined by the query optimizer contains a
filter-join, that means creation and use of a binding predicate lowers
the overall cost of computation—that its selectivity outweighs the cost
of its computation. The query plan specifies exactly which atoms to
use to create supplementary relation, and in what order.

Note that this approach has been implemented only for non-
recursive queries, as part of the IBM DB2 database.
Static Approach. Sereni et.al. [108] proposes a purely static approach,
and requires no modifications to a database runtime. This approach re-
lies on the approximate statistics on the contents of predicates—even
those of IDB predicates, computed using abstract interpretation [38].
A heuristic, similar to ones implemented by runtime query optimiz-
ers, then uses this approximated information to find an ordering that
minimizes cost.

Central to this approach is the notion of a predicate dependency
graph: a static representation of statistics on a predicate. A predicate
dependency graph for a predicate P (X1, ..., Xn) is a triple (Σ, G,Π):

3.3. Magic Sets 147

SUPER SUB

5.9

1.1

4501 30769

Figure 3.5: Dependency of hasSubtype

• Σ is a function that assigns an estimated size for each Xi.

• G is a set of arrows Xi
α→ Xj , denoting that for every value of

Xi, there are α values of Xj .

• Π is a set of equality constraints of the form Xi = Xj .

Figure 3.5 illustrates the dependency graph for the predicate
hasSubtype(SUPER,SUB). The labeled edges between columns SUPER
and SUB denote that for every superclass (SUPER), there are 5.9 sub-
classes (SUB), and every sub-class has on average 1.1 super-classes. The
labeled edges between the root node and the columns denote that SUPER
has 4501 unique values (Σ(SUPER)), and SUB 30769 unique values.

Whereas dependency graphs for EDB predicates are derived by an-
alyzing ground facts stored in them, dependency graphs for IDB pred-
icates need to be derived from EDB dependency graphs. [108] defines
a method based on abstract interpretation [38] for computing IDB de-
pendency graphs.

An abstract interpreter for Datalog interprets an IDB rule using
abstract values (that is, pessimistic upper bounds) for predicates in
the rule body, to derive abstract values for the predicate in the rule
head. This is analogous to a Datalog runtime that interprets an IDB
rule using concrete values of predicates in the rule body, to derive
concrete values for the predicate in the rule head. In this application,
the abstract values are predicate dependency graphs.

To provide some intuition for this technique, we next show the
abstract interpretation of an intersection, φ1 ∧ φ2. We refer interested
readers to [108] for the interpretation of other relational operators.

148 Recursive Query Processing

Let JφiK= (Σi, Gi,Πi) denote the dependency graph for formula φi.
Jφ1 ∧ φ2K= (Σ, G,Π) is determined as follows:

• Σ(X) for any column X in φ1∧φ2 is no bigger than either Σ1(X)
or Σ2(X). Thus, Σ(X) = min(Σ1(X),Σ2(X)).

• In the case that G1 and G2 have different constraints on the same
column, e.g., X α1→ Y ∈ G1, X

α2→ Y ∈ G2, we note that both α1
and α2 are pessimistic approximations. Thus, we can pick the
best, or the smaller, of the two as the result of the interpretation:
X

α→ Y ∈ G, where α = min(α1, α2).

• All equality constraints hold after intersection: Π = Π1 ∪Π2.

In the presence of recursion, [108] unrolls a recursive cycle some
fixed number of times (3 proved effective in practice), and interprets
the resulting, non-recursive program.

Given predicate dependency graphs for all predicates, we can com-
pute the estimated size of any given predicate: it is the weight of the
minimum spanning tree of the predicate’s dependency graph, where
edge weights are composed with multiplication rather than addition.
Note that for hasSubtype (Figure 3.5), there are two reasonable es-
timated sizes: 4501 × 5.9 ≈ 26556, or 30769 × 1.1 ≈ 33846. This dis-
crepancy arises from the estimated nature of this analysis. Since the
analysis stems from pessimistic estimates, both numbers are likely to
be over-estimates. Therefore, one might choose the lesser of the two as
the estimated size of hasSubtype.

Using the estimated predicate size information, a greedy heuristic is
used to order the atoms in the query, by picking the smallest predicate
first. The size of a predicate is computed in context. For instance, in re-
ordering the query in Figure 3.4, we pick N = "Cloneable" first, as it is
guaranteed to have size 1. Next, we pick hasName(Cloneable,N). Even
though the estimated size of the entire hasName predicate may be much
larger, in context of the atoms before it, its size is the number of types
with the name "Cloneable", a much smaller number. Informally, the
estimated size of formula φ in the context of ψ, is simply the estimated
size of the conjunction φ ∧ ψ.

3.3. Magic Sets 149

Applying the static technique, we can reorder query as follows. We
observe that this ordering would provide exactly the binding necessary
to constrain the expensive computations of hasSubtypePlus:

r1 query(C) :- N = "Cloneable", hasName(Cloneable, N),
type(Cloneable), hasSubtypePlus(Cloneable,C),
not declaresMethod(C, "clone").

Note that the general technique of abstract interpretation can be
applied over other abstract domains to provide potentially better static
estimates of predicate statistics. For instance, [71] uses abstract inter-
pretation over a domain of histograms.

Defining binding predicates. A binding predicate for an atom can be
created using all, or some subset of atoms appearing to its left in the
rule body. To minimize the cost of computing the binding predicate,
one should only include those atoms that make the binding predicate
more selective. For instance, the binding predicate for hasSubtypePlus
in r1 can be defined as follows:

sup1
3(Cloneable) :- N = "Cloneable",

hasName(Cloneable, N), type(Cloneable).

However, type(Cloneable) does not increase the selectiveness of
the binding predicate: hasName(Cloneable,N) implies that Cloneable
is either a class or interface, both of which are type’s. Thus, the
following binding predicate is equally selective, but less costly:

sup1
3(Cloneable) :- N = "Cloneable", hasName(Cloneable, N).

The query plan produced by [109] specifies which atoms to include
in a binding predicate: i.e. R filter-join S means that the atoms used
to produce R should be used to create the binding predicate.

The static approach of [108] applies the same technique used for
atom ordering, to determining which atoms to include in the produc-
tion of a binding predicate. If the estimated size of φ ∧ ψ is the same
(or within a certain threshold of) as that of φ, then ψ is not adding
more selectivity, and thus not necessary in the production of a binding
predicate.

150 Recursive Query Processing

Choice of bound variables. Bound variables are those variables pro-
jected into binding predicates. Naively, bound variables are all those
that appear in the atoms used to derive a binding predicate. How-
ever, this is an overly conservative strategy, as some variables may not
constrain the computation at all. Consider the following program:

p(X,Y) :- X = 1, type(Y).
q(X,Y) :- X = Y.
query(X,Y) :- p(X,Y), q(X,Y).

The fact that p is constraining q arises only from the binding of X
to a constant. Y is not constrained at all, and thus does not need to be
projected into the binding predicate for q.

3.3.3 Extensions to Magic Sets

Magic sets techniques have been extended to pass other useful con-
straining information through rewriting. Notably, there has been a line
of work applying magic sets-like techniques to bottom-up evaluated
logic programs with arithmetic comparison constraints (e.g., X < Y ,
X >= Z, etc.) For instance, the technique presented in [111] allows us
to optimize the following program:

r1 p(X,Y) :- q(X,Y).
r2 query(X,Y) :- p(X,Y), X >= 4, X + Y < 10.

The constraints X >=4 and X+Y < 10 can be pushed into r1, by
rewriting r1 into the following rule, and thus constraining the deriva-
tion of p to facts relevant to the query:

r1’ p(X,Y) :- q(X,Y), X >= 4, X + Y < 10.

Other work [114, 31] further extends constraint pushing to han-
dle more expressive constraints, or constraints whose values are only
available at runtime.

4
Incremental Maintenance

Materialized views can be used to improve the performance of Datalog
programs that perform frequent yet complex queries. If the EDBs that a
materialized view is computed from change, the materialized view needs
to be maintained to reflect such changes. The efficient maintenance of
materialized views thus become an important aspect of sustaining their
performance benefits. Incremental view maintenance refers to a family
of methods aimed at the efficient maintenance of views in the face of
base relation changes. Rather than re-computing materialized views in
full, incremental view maintenance methods only compute the changes
to views based on changes to EDBs.

In this chapter, we introduce three incremental maintenance algo-
rithms. Counting [52] is an effective method for incrementally main-
taining non-recursive view definitions. It counts the possible ways a
tuple can be derived into a view; tuples with count of at least 1 are
part of the view; tuples with count of 0 are deleted from the view. The
Delete and Rederive (DRed) [52] method is well-known for maintain-
ing recursive views. DRed builds on semi-naïve evaluation, and works
by first over-deleting tuples conservatively, and then re-deriving tuples
that may have alternative derivations. We conclude with a provenance-

151

152 Incremental Maintenance

based approach [87] that reduces the overhead of unnecessary deletion
and rederivations of DRed, via some additional bookkeeping of the
provenance of each derivation.

Note that the algorithms presented either incur storage overheads
in book-keeping, or computational overheads in evaluating additional
rules (and thus potentially expensive joins) in computing increments.
There are certainly situations when full re-computation would be
cheaper than incremental maintenance: for instance, if the majority
of base tuples are deleted.

4.1 Counting Algorithm for Non-recursive Queries

As its name suggests, the counting algorithm works by storing the
number of alternative derivations for each tuple t in the materialized
view. We refer to this number as count(t). Using Figure 1.1 in Chap-
ter 1.3 as our example network, the initial base tuples are link(a,b),
link(b,c), link(c,d), and link(c,c). When executing the all-pairs
reachability program in Section 1.3 to a fixpoint, the reachable rela-
tion consists of the tuples { (a,b), (b,c), (c,c), (c,d), (a,c),
(a,d), (b,d)}. The reachable tuples {(a,b),(b,c),(c,c)} have
a unique derivation each, e.g. count(reachable(a,b))= 1. On the
other hand, the tuples {(c,d),(a,c),(b,d),(a,d)} have two possible
derivations each. For example, reachable(b,c) can be derived in two
ways, from link(b,c), or from link(b,c), reachable(c,c). Thus,
count(reachable(b,c))= 2.

To implement the counting algorithm, one can use the semi-naïve
algorithm described in the previous section, and maintain a count
with each tuple. For each derivation or deletion of a tuple t, its
count(t) is incremented/decremented by 1. A tuple with count of 0
is deleted. Suppose link(a,b) is deleted, this will result in the dele-
tion of reachable(a,b), since count(reachable(a,b))= 1. On the
other hand, if link(c,c) is deleted, even though reachable(c,c) is
deleted, the tuples reachable(a,c) which has a count of 2 will not
be deleted. Instead, the algorithm will simply decrement the count of
reachable(a,c) to 1. At a later time, if link(b,c) is deleted, the

4.2. Delete and Re-Derive Algorithm (DRed) 153

count of reachable(a,c) goes to 0, and reachable(a,c) is deleted.
The counting algorithm may result in infinite counts in the pres-

ence of recursively derived predicates. For instance, if the underlying
input graph has cycles in the paths, our reachable program will not
terminate since each invocation of the recursive rule r1 will generate a
count of increasing value.

4.2 Delete and Re-Derive Algorithm (DRed)

Delete-and-Rederive (DRed) [52] is the standard algorithm for recur-
sive view maintenance. DRed has three phases: deletion, put-back, and
assertion. At a high level, a tuple is deleted during the deletion phase
if at least one of the rules that derived it can no longer do so; the put-
back phase computes the deleted tuples that have at least one other
possible derivation, and thus should be put-back into the view; and
lastly, the assertion phase computes all new tuples for the view due to
assertions into the base relations. We illustrate DRed by applying it to
the same network reachability example used by the previous section,
by deleting the tuple link(c,c). We focus on the deletion and put-
back phase, as the assertion phase is a straightforward adaptation of
the semi-naïve algorithm. Our presentation of DRed is example-driven,
in order to provide the high-level intuition. More details are available
in Gupta et.al. [52].

Deletion phase. To compute the deleted tuples from reachable, we
apply delta rules similar to those for semi-naïve evaluation (Figure 3.1
in Section 3.1.1), with two adjustments. First, we initialize reachable[0]

to the content of reachable before the deletion phase (rather than the
empty set ∅). Secondly, as there are no assertions in this phase, we use
δ−(reachable)[i] to denote the difference between iteration i + 1 and
i, i.e, the deletion tuples newly derived in each iteration i. For base
relations such as link, δ−(link) represent the tuples deleted from the
relation, and is the same for all stages i. For our example, the deletion
rules are as follows:
Initialization:

δ−(reachable(X, Y))[0] :- δ−(link(X, Y)).

154 Incremental Maintenance

Initialization
reachable[0] := {(a, b), (b, c), (c, d), (c, c), (a, c), (a, d), (b, d)}
δ−(reachable)[0] := {(c, c)}

Iteration 1:
reachable[1] := {(a, b), (b, c), (c, d), (a, c), (a, d), (b, d)}
δ−(reachable)[1] := {(b, c), (c, d)}

Iteration 2:
reachable[2] := {(a, b), (a, c), (a, d), (b, d)}
δ−(reachable)[2] := {(a, c), (b, d)}

Iteration 3:
reachable[3] := {(a, b), (a, d)}
δ−(reachable)[3] := {(a, d)}

Iteration 4:
reachable[4] := {(a, b)}
δ−(reachable)[4] := ∅

Figure 4.1: Iterations of the deletion phase, for reachability example.

For each i >= 0:
δ−(reachable(X, Y))[i+1] :- link(X,Z), δ−(reachable(Z, Y))[i]

reachable[i+1] := reachable[i] − δ−(reachable)[i]

We apply these rules repeatedly until δ−(reachable)[i] is ∅. Fig-
ure 4.1 illustrates the iterations of the deletion phase, as applied to the
reachability example.

Put-back phase. The put-back phase re-derives tuples that may have
been deleted conservatively during the first phase, but have alternate
derivation paths. In our example, the put-back rules are as follows,
where δ−(reachable) denotes the union of δ−(reachable)[i] for all
iterations i during the deletion phase:
Initialization:

δ+(reachable(X, Y))[1] :- link(X,Y).
For each i >= 0:

δ+(reachable(X, Y))[i+1] :- δ−(reachable(X, Y)), link(X, Y).
δ+(reachable(X, Y))[i+1] :- δ−(reachable(X, Y)), link(X, Z),

δ+(reachable(Z, Y))[i]

reachable[i+1] := reachable[i] ⋃
δ+(reachable)[i]

Similar to the deletion phase, these rules are evaluated for iterations

4.3. Provenance-based Incremental Maintenance 155

i = 0 until no more δ+ are derived. The put-back phase produces the
correct tuples into reachable.

4.3 Provenance-based Incremental Maintenance

Despite of its guarantee to terminate on the maintenance of recursive
rules, the DRed method removes a lot of tuples redundantly, only to
rederive them again. The example of retracting link(c,c) illustrates
this point exactly. Since node d is still reachable from node a (Fig-
ure 1.1), all of the deleted reachable tuples (with the exception of
reachable(c,c)) will be inserted back in the put-back phase.

As an alternative to DRed, the Orchestra [50] system proposed the
use of provenance information to perform a derivability test to deter-
mine whether tuples ought to be deleted in the presence of base tuple
deletions. This has been further refined in [87], which uses a compact
form of absorption provenance, which enables us to directly detect when
view tuples are no longer derivable and should be removed. For ex-
ample, assuming we annotate the base tuples link(a,b), link(b,c),
link(c,a), and link(c,b) with p1, p2, p3, and p4 respectively. The
provenance expression for reachable(b,b) is (p2 ∧ p4)∨ (p1 ∧ p2 ∧ p3),
given that there are two alternative derivations for reachable(b,b).

Absorption provenance shows its value in handling deletions. When
link(c, b) is deleted, the only step required with absorption provenance
is to zero out p4 in the provenance expressions of all reachable tuples.
In this example, zeroing out this derivation will result in a new prove-
nance expression (p1 ∧ p2 ∧ p3), which means that reachable(b,b) is
still derivable. Encoding for absorption provenance can be achieved ef-
ficiently via the use of the binary decision diagram [30] (BDD) data
structures.

4.4 Incremental Maintenance for Negation and Aggregates

In order to compute Datalog rules with aggregation, incremental fix-
point evaluation techniques [97] have been proposed. These techniques
are amenable to incremental pipelined query processing. They are gen-
erally applied tomonotonic aggregates [106] such as min, max and count

156 Incremental Maintenance

incrementally, based on the current aggregate and each new input tuple.
Programs with stratified aggregation can be maintained using standard
algorithms for incremental maintenance of non-recursive aggregate SQL
queries, by (1) computing the sets of insertions and deletions to the
predicates occurring in the bodies of aggregate rules, then (2) apply-
ing those algorithms, viewing both IDB and EDB predicates as source
tables.

Programs with stratified negation can be maintained using stan-
dard algorithms for incremental maintenance as well [52], where (1) a
negated predicate ¬q can be computed from q and the particular bind-
ings provided by the positive predicates in the rule body, and (2) a
negated ∆-predicate ∆(¬q) is computed directly from ∆q and q.

Dong et al. [42, 41] presents the use of first-order (FO) queries for
executing recursive view maintenance, applicable to transitive closure
computations of graphs. The practical implication of FO evaluation is
that the maintenance can be supported by existing database systems.
In particular, [41] presents an incremental evaluation system that uses
standard SQL queries executable in a commercial database engine, for
supporting transitive closure maintenance of graphs.

5
Datalog Extensions

This chapter presents language extensions to the core Datalog intro-
duced earlier in Chapter 2. Some of these extensions are used in ap-
plications surveyed in Chapter 6, while others are included since they
are of general interest. They include advanced forms of negation and
aggregation (Section 5.1 and 5.2), arithmetic (Section 5.3), and functors
(Section 5.4). We close with a discussion of extensions to incorporate
updates (Section 5.5).

5.1 Beyond Stratified Negation

While stratified negation as presented in Section 2.3 has a clear and
straightforward semantics, it rules out some interesting examples in-
volving recursion through negation. A large number of alternative se-
mantics have been explored to relax this restriction, including negation
as failure [34], the stable model semantics [48], the well-founded seman-
tics [121, 47], modular stratification [104, 61], and universal constraint
stratification [103, 105]. A proper examination of all these alternatives
would require a lengthy survey paper of its own. Here, we briefly present
one popular alternative from the list, the well-founded semantics.

157

158 Datalog Extensions

The well-founded semantics gives meaning to Datalog programs
making arbitrary use of negation via a three-valued model in which
facts in the query output may be either true, false, or undefined. For
stratified programs, the semantics agrees with the one given in the pre-
vious section, and undefined values do not occur. But with recursion
through aggregation, undefined values may be used to resolve certain
logical paradoxes. For instance, recall the non-stratified program of Ex-
ample 2.6. We observed earlier that to satisfy the rules of the program
read as logical constraints, either p or q must be present in any model
of the program, yet we had no reason to prefer one over the other. In
this case, the well-founded semantics assigns both p and q the value
undefined.

Another famous example involves the so-called win-move game [121,
47]. Here, we have a single EDB relation move representing the legal
moves of a game played by two players, player I and player II. The two
players take turns moving a pebble on the move graph. A player loses
the game if she must play from a position with no moves (i.e., from a
node with no outgoing edges). For instance, consider the following move
graph:

a b c d

In this graph, node d is a lost position because it has no outgoing
moves. This is indicated by the black shading. Node c, on the other
hand, is a won position, because a player can move the pebble from
c to d, forcing the other player to lose. This is indicated by the white
shading. Nodes a and b are more interesting: from node b, the move to c
is a losing move, because c is a won position for the other player; hence
the best strategy is to move to a, from which the only choice for the
other player is to move back to b. This can go on ad infinitum, hence
nodes a and b are drawn positions, indicated by the grey shading.

The won, lost, and drawn positions can be computed under the well-
founded semantics using a non-stratified Datalog¬ program consisting
of a single rule:

win(X) :- move(X,Y), not win(Y).

5.2. Beyond Stratified Aggregation 159

The won, lost, and drawn positions on the graph correspond precisely
to the tuples in win with values true, false, and undefined, respectively,
in the query output.

Operationally, the result of a Datalog¬ program under the well-
founded semantics can be computed via the so-called alternating fix-
point procedure [47]. In brief, the basic idea is to have the computation
proceed in stages, with negated atoms in the program evaluated at a
given stage using the result of the computation from the previous stage.
This gives rise to an alternating sequence of computations of overes-
timates and underestimates of the set of true facts in the final result.
After a number of stages polynomial in the size of the source data,
the overestimate and underestimate sets will no longer change. At this
point, the tuples from the underestimate are collected as the true facts,
those not in the overestimate are the false facts, and the tuples that
are in the overestimate but not the underestimate are collected as the
undefined facts.

Interestingly, it is known that under the well-founded semantics,
the win-move game is a normal form for Datalog¬ programs, in the
sense that any Datalog¬ program can be rewritten into an equivalent
Datalog¬ program whose only recursive rule has the form

win(X̄) :- move(X̄), not win (Ȳ).

where X̄ and Ȳ are tuples of variables. It is also known [45, 46] that
any partial Datalog¬ program P (one whose output may contain
undefined facts) can be transformed into a total Datalog¬ program P ′

(no undefined facts), such that P and P ′ agree on the true facts.

5.2 Beyond Stratified Aggregation

While stratified aggregate programs (see Section 2.4) are a natural class
of programs with a clear and intuitive semantics, a number of database
transformations of practical interest cannot be expressed in this way.
For instance, in declarative networking (Section 6.2) the need arises to
compute the costs of shortest routing paths in a network using a Dat-
alog program, where link tuples now carry a cost attribute. This can
be accomplished using a Datalog program with stratified aggregation:

160 Datalog Extensions

cost(X,Y,C) :- link(X,Y,C).
cost(X,Y,C) :- cost(X,Z,C1), link(Z,Y,C2), C = C1 + C2.
shortest(X,Y,min<C>) :- cost(X,Z,Y,C).

Here a fact cost(a,b,c) indicates that there is a path from a to b of
cost c. Although the program has a well-defined semantics, when the
link graph contains cycles, cost may be an infinite relation; hence a
fixpoint computation will not even terminate.

An alternative formulation of the program avoids the problem by
using recursion through aggregation:

cost(X,Y,C) :- link(X,Y,C).
cost(X,Y,C) :- shortest(X,Z,C1), link(Z,Y,C2), C = C1 + C2.
shortest(X,Y,min<C>) :- cost(X,Z,Y,C).

Another example of a query for which the natural formulation in
Datalog involves recursion through aggregation is the company controls
problem [33, 90]. In this example, an EDB fact owns(a,b,n) indicates
that company a owns fraction n of the stock of company b, and we
say that company a controls company b if more than half of b’s shares
are owned by directly by a, or by indirectly by companies that a con-
trols. We can compute the controls relation via the following Datalog
program using recursion through aggregation:

owns_via(X,X,Y,N) :- owns(X,Y,N).
owns_via(X,Z,Y,N) :- controls(X,Z), owns(Z,Y,N).
total_owns_via(X,Y,sum<N>) :- owns_via(X,_,Y,N).
controls(X,Y) :- total_owns_via(X,Y,S), S > 0.5.

To deal with these and other examples, Ross and Sagiv [106] present
a generalization of stratified aggregation called monotonic aggregation.
The basic idea is as follows. Given a Datalog¬ with aggregates program
P , we first partition the IDB predicates of P into connected components
according to the precedence graph for P , and process one connected
component at a time in topological order. Within a component, recur-
sion through aggregation is allowed, so long as the aggregate functions
used in the program are monotone in a certain precise sense, and the
rules of the program obey certain syntactic conditions. These condi-
tions are somewhat technically involved and we omit them here; see
the paper by Ross and Sagiv [106] for details. Under these conditions,

5.3. Arithmetic and Infinite Relations 161

it can be shown that the immediate consequence operator TP as de-
fined in the previous section has a least fixpoint (although additional
restrictions are required to ensure that the fixpoint can be reached
in finitely many steps). Practical incremental evaluation strategies for
implementing monotonic aggregation are addressed in the paper by
Ramakrishnan et al. [98].

Alternative proposals to monotonic aggregation include an ap-
proach based on the well-founded semantics due to Van Gelder [120]
and approaches based on semiring-annotated relations [51, 118]. More
recently, Conway et al. introduced BloomL language which allows
monotonic aggregation and other functions to be written using user-
defined lattices [37].

At present, the community seems not to have converged on any one
of these proposals as “the” standard semantics for aggregation through
recursion, and there seems to be room for new research in this area
with the goal of balancing expressiveness, efficiency, and usability for
the programmer.

5.3 Arithmetic and Infinite Relations

In practical applications the need often arises to express queries involv-
ing arithmetical calculations. For example, consider again the reachabil-
ity example. We might wish to compute, for each node in the network,
all the nodes that are reachable from this node, along with the number
of hops from this node. This can be expressed naturally in Datalog
extended with + as follows:

reachable(X,Y,1) :- link(X,Y).
reachable(X,Y,J) :- link(X,Z,I), link(Z,Y), J = I+1.

The intended meaning of the program is clear (and indeed, the model-
theoretic, proof-theoretic, and fixpoint-theoretic semantics extend to
handle queries with +). However, note that in contrast to “normal”
EDB predicates like link, the graph of the + function is infinite. If the
expected constraints hold for the link relation—in particular, if link
is acyclic—the example above will be well-behaved in the sense that a
least fixpoint computation will terminate in polynomial time in the size

162 Datalog Extensions

of link. However, this will not be the case if link contains a cycle; and
in general fixpoint evaluation of Datalog programs involving infinite
relations take superpolynomial time or may even diverge. (Likewise,
the least models of such programs may be superpolynomial or even
infinite).

Motivated by these observations, a line of theoretical work initiated
by Ramakrishnan et al. [96], and continuing in [63, 65, 107, 62, 35],
has investigated basic issues with Datalog programs involving infinite
relations, in particular focusing on the problem of query safety [96] (aka
finiteness [62]). The safety problem is to decide whether the result of
the a given Datalog program can be guaranteed to be finite even when
some source relations are infinite.

In the papers mentioned above, additional restrictions on the in-
finite source relations are typically assumed in the form of finiteness
constraints [96]. These are, essentially, a relaxation of the standard
notion of functional dependencies [12] in which a subset of a relation’s
attributes are specified are “finitely determining” other attributes. For-
mally, a finiteness constraint is of the form p : V W , where p is a
predicate symbol and V and W are sets of argument positions of p. A
(possibly infinite) instance P of p satisfies the constraint if P associates
a finite set of “W -values” with each “V -value.” For example, if P is in-
tended to encode arithmetical addition, i.e., P (a, b, c) holds precisely
when a+b = c, then P satisfies p : {1, 2} 3. If, moreover, the domain
of P is assumed to be that of the natural numbers, then p : 3 {1, 2}
holds as well.

The paper by Kifer [62] includes a thorough overview of known re-
sults (see also Cohen et al. [35]). It is known, for example, that safety of
monadic core Datalog programs—where all IDB predicates are unary—
with finiteness constraints is decidable [107], and that a stronger notion
of supersafety [63, 62] is decidable for arbitrary core Datalog programs
with finiteness constraints. On the other hand, decidability of safety for
core Datalog programs over infinite relations with finiteness constraints
remains open.

5.4. Functors 163

5.4 Functors

Many applications require “invention” of new values during the course
of query computation. For example, when we present data integration
and data exchange (Section 6.3) we will see examples where missing val-
ues in a target schema need to be “invented” based on combinations of
source values. Likewise, when we present declarative networking (Sec-
tion 6.2) we will need to perform list concatenation—another form of
value “invention”—in order to compute routing paths.

To handle these requirements cleanly, Datalog has been extended
with the mechanism used in logic programming for such purposes,
namely, uninterpreted functions (or functors).1 Specifically we allow
the use of function symbols f, g, h, . . . in the bodies and heads of Dat-
alog programs. These are uninterpreted functions, not to be confused
with user-defined functions: the result of, say, applying f to arguments
(1,2) is not a number, but the value f(1, 2). More precisely, we assume
a Hilbert interpretation of function symbols—they are interpreted “as
themselves”—just as we have done all along for constant symbols.

For example, in declarative networking (Section 6.2), we need to
keep track of routing paths in the network.
path(S,D,P) :- link(S,D), P = [S,D].
path(S,D,Z,P) :- link(S,Z), path(Z,D,Z2,P2), P = [S,P2].

Here [·, ·] is an uninterpreted function (functor) used to perform list
concatenation.

As another example, in data integration and data exchange (Sec-
tion 6.3), we often need to “invent” new values corresponding to miss-
ing schema elements. Suppose, for instance, that we wish to restruc-
ture employee data stored in a single table empl(name, salary) to
conform to another schema in which the same data is stored in two ta-
bles names(empID, name) and salaries(empID, salary). To do this
we must invent a value for empID, such that by joining on empID we
can recover the original information. This can be accomplished using a
functor f as follows:

1Historically, Datalog was defined as essentially Prolog without functors; so we
abuse terminology somewhat by continuing to use the term “Datalog” for the ex-
tension considered here.

164 Datalog Extensions

names(f(Name,Salary), Name) :- empl(Name, Salary).
salaries(f(Name,Salary), Salary) :- empl(Name, Salary).

It is common to refer to f also as a Skolem function, where the ter-
minology is borrowed from mathematical logic. Data integration and
exchange systems often do not expose Datalog directly, but rather al-
low specification of constraints between database instances using logi-
cal formalisms, typically fragments of first- or second-order logic. For
the example above the corresponding first-order constraint (a so-called
tuple-generating dependency) is

∀x ∀y (empl(x, y)→ ∃z names(z, x) ∧ salaries(z, y))

By Skolemizing this constraint, we replace the existentially-quantified
variable z with a Skolem function f :

∀x ∀y (empl(x, y)→ names(f(x, y), x) ∧ salaries(f(x, y), y))

Intuitively, f produces a “witness” value for z, given input values x and
y.

The extension of Datalog with functor terms is extremely power-
ful: in fact, the resulting language is Turing-complete. Many practical
systems, including P2 [93], RapidNet [101], and LogicBlox [4], put the
burden of guaranteeing termination on the developer writing the Dat-
alog code.

An alternative explored in the data exchange community is to iden-
tify syntactic conditions under which termination in polynomial time
can be guaranteed. We present here one commonly-used condition,
called weak acyclicity [40, 43], originally developed for chasing with
collections of logical dependencies and adapted here to work with Dat-
alog with functor terms. Given a Datalog program with functor terms
P , we construct a directed dependency graphG = (V,E) of P as follows:

• for each IDB predicate p of arity k occurring in P , V contains k
vertices (p, 1), . . . , (p, k);

• there is an edge from (p, i) to (q, j) whenever there is a rule
A :- . . . , B . . . such that A is a p-atom with a variable term
X at position i and B is a q-atom with the same variable X
occurring at position j

5.5. States and Updates 165

• there is an edge labeled ? from (p, i) to (q, j) whenever there is
a rule A :- . . . , B . . . such that A is a p-atom with a functor
term at position i containing a variable X as an argument, and
B is a q-atom with the same variable X at position j

We say that P is weakly acyclic if its dependency graph does not have
a cycle going through an edge labeled ?. Intuitively, weakly acyclic
programs do not have any “feedback loops” allowing unbounded gener-
ation of new values via functor terms. One can show that if P is weakly
acyclic, its least fixpoint can be computed in time polynomial in the
size of the source database.

Example 5.1. To illustrate, consider the following recursive version of
the names and salaries program presented earlier:
names(f(Name,Salary), Name) :- empl(Name, Salary).
salaries(f(Name,Salary), Salary) :- empl(Name, Salary).
empl(Name,Salary) :- names(Id,Name), salaries(Id,Salary).

The dependency graph of the program is shown below:

(names, 2)

(names, 1)

(empl, 1)

(empl, 2)

(salaries, 1)

(salaries, 2)

?

?

?

?

Although the dependency graph is cyclic, observe that there is no cycle
through an edge labeled ?. Therefore the program is weakly acyclic.

Note that many programs of practical interest, including the short-
est paths query presented earlier, are not weakly acyclic. We will revisit
that example in Section 6.2.

5.5 States and Updates

A useful feature in data management systems is the use of event-
condition-action rules, where events are used to trigger rule executions

166 Datalog Extensions

to apply actions given specific conditions. Here, events are triggered
by tuple updates or timers, conditions reflect the current state of the
database, and actions involve tuple insertion and deletions of tuples
or the generation of events. One can view the delta rules presented in
Section 3.1 for query processing as an instance of such rules. Event-
condition-action rules are also useful in other contexts, e.g. flexible
enforcement of user-defined constraints, customizing different forms of
cascading updates, etc.

Datalog extensions for updates. As one example Datalog extension
to incorporate explicit updates, Abiteboul and Vianu [9, 13] consider
an extended language called Datalog¬¬ that allows negative atoms in
the rule heads. This provides the ability to retract a previously derived
tuple.

Example 5.2. To illustrates an example Datalog¬¬ rule, we consider
a constraint imposed on table salaries(empID,salary) (introduced
in Section 5.4): the salaries table should not contain information
about people who have retired. Assuming table retire(empID,date)
maintains the retirement dates of former employees, such a constraint
can be implemented using the following Datalog¬¬ rule:

not salaries(empID,salary) :- salaries(empID,salary), retire(empID,date).

The introduction of deletion in the rule head results in a non-
inflationary semantics, i.e. an IDB tuple that has been derived pre-
viously may be deleted subsequently during the fixpoint computation.
For instance, the insertion of retire tuples may lead to the deletion
of salaries tuples, and hence, the eventual fixpoint may end up with
a smaller number of salaries tuples.

In general, the global semantics of a set of interacting active rules is
complicated, since the result is highly dependent on the order in which
rules are triggered, particularly in situations when an event can trigger
multiple rules at the same time, some of which involve actions that
update the conditions in other rules that are fired at the same time.

In the case of Datalog¬¬, there are multiple reasonable options in
defining its semantics. Given an event that can trigger multiple rules,

5.5. States and Updates 167

a deterministic semantics would involve firing all rules triggered by
the event in parallel, buffering up all the actions, and applying them
only when all rules have completed their execution. A non-deterministic
semantics applies one rule at a time, and the order is decided arbitrarily.
See Widom and Ceri [124] for more details on active database systems.

Statelog. In order to resolve execution ambiguities in rules with ex-
plicit state updates, Ludaesher proposed Statelog [82], that augments
the Datalog language to incorporate an explicit notation of state. State
in this case is timestamped logically using natural numbers. We provide
the following formal definition.

Definition 5.1. Statelog uses a a new state constant 0 (denoting the
initial state), a unary function symbol +1 (mapping a state to its suc-
cessor), and a state variable S. The set S state terms is the least set
such that

(1) [0] ∈ S, [S] ∈ S, and

(2) if [T] ∈ S, then [T + 1] ∈ S

A Statelog atom is of the form [T]p(x1, ..., xn), where [T] is a state
term, p is an n-ary relation symbol, and x1, ..., xn are data constants
or variables. A Statelog literal is a Statelog atom or its negation.
A Statelog rule is an expression of the form

[S + k0]H :- [S + k1]B1, ..., [S + kn]Bn

where [S + k0]H is a Statelog atom and [S + k1]B1, ..., [S + kn]Bn are
Statelog literals. A Statelog program is a finite set of Statelog rules.

The basic idea of the Statelog approach is to use the current state
and possibly previous states in order to define a new state or extend
the current one. In the first case, a rule defines the changes from the
current state to its successor, i.e., an update; in the second case, a rule
extends the current state and defines a view (that may be referred to
by other rules).

168 Datalog Extensions

Using Statelog, one can model state changes to each atom over
time. In fact, Ludaescher [82] showed that one can implement different
Datalog semantics, e.g. stratification semantics (Section 2.3) and well-
founded semantics (Section 5.1), emulated as Statelog rules.

6
Applications

We conclude our exposition of Datalog with some example applications.
In particular, we discuss the domains of program analysis, declarative
networking, data integration and exchange, and enterprise software sys-
tems. For each domain, we highlight language extensions, runtime con-
siderations, and use cases. We then briefly survey other applications.

6.1 Program Analysis

Program analysis is a term covering a broad range of analysis: data-
flow, control-flow, points-to, source code structure, etc. The results of
these analysis are used to optimize programs for performance, to dis-
cover bugs, to enforce coding standards, etc. The domain of program
analysis is particularly suitable for Datalog, as recursion and non-linear
recursion in particular, is pervasive in analysis logic. In this section, we
first give readers a taste of program analysis in Datalog with an exam-
ple from a Java points-to analysis; we then provide an overview of the
major works in this area, and discuss two in particular in more details.

169

170 Applications

Program analysis by example. Points-to analysis determines what
heap object a variable can point to. For instance, given the simple Java
statement: Object a = new Object();, the variable a points to the
heap object allocated by the call to new. Similarly, given an assignment
from one variable to another: a = b;, variable a points to every heap
location pointed to by b.

The following two rules are part of a points-to analysis
for Java. They specify the recursive relationship between the
heap objects a variable can point to (stored in the pred-
icate varPointsTo(Var,HeapObj)), and the heap objects that
the field of an object can point to (stored in the predicate
fieldPointsTo(BaseObj,Field,Obj)):

r1 fieldPointsTo(BaseObj,Field,Obj) :-
storeField(From,Base,Field), varPointsTo(Base,BaseObj),
varPointsTo(From,Obj).

r2 varPointsTo(To,Obj) :-
loadField(Base,Field,To), varPointsTo(Base,BaseObj),
fieldPointsTo(BaseObj,Field,Obj).

Rule r1 specifies that, given that a reference is assigned to a
field, Base.Field = From, where reference Base points to heap ob-
ject BaseObj, and reference From points to heap object Obj, then the
field Field of heap object BaseObj points to Obj, as well. That is, a
field points to heap locations its assigned references point to.

Rule r2 specifies that, given that a field is assigned to a reference,
To = Base.Field, where the reference Base points to BaseObj, and
the field Field of BaseObj points to Obj, then reference To points to
heap object Obj, as well. That is, a reference that has been assigned a
field, points to the heap locations that the field points to.

Note that fieldPointsTo and varPointsTo are mutually recursive,
yet varPointsTo appears twice in the definition of fieldPointsTo.
That is, these rules are not linearly recursive rules.

Overview of program analysis using Datalog. Using logic programs
and database queries to express program analysis has been explored

6.1. Program Analysis 171

since the early 90’s [118, 39]. The first Datalog-based analysis was in-
troduced by Thomas Reps [102]. Reps specified interprocedural data-
flow analysis and program slicing [116] in Datalog, and evaluated the
analysis using Coral [99]. The goal of Reps’ work was to demonstrate
that not only can one specify a program analysis in Datalog, a demand-
driven variant of the analysis, where answers are computed lazily, rather
than exhaustively for the whole program, can be naturally derived by
applying magic set rewrites.

Reps’ seminal work left two major open questions. First, can a com-
plete program analysis be specified in Datalog? Reps’ analysis made
many simplifying assumptions about the program analyzed. Is Datalog
expressive enough for program analysis that can be used in practice?
Secondly, can analysis specified in Datalog scale? Scalability of pro-
gram analysis is an issue in general regardless of the language they
are implemented in. Is it possible then, for program analysis programs
specified in a high level language like Datalog, to match, or even ex-
ceed, the performance of their counterparts implemented in imperative
languages such as C or Java?

These two questions have been the focus of recent research in
Datalog-based program analysis. We next describe two frameworks that
distinguish themselves in the completeness of the analysis implemented,
and in the extensive evaluations provided for their implementations.

.QL. .QL, originally named CodeQuest [54], is a source code query
language originally developed at Oxford University. .QL has since been
commercialized by Semmle, Inc. [7].

.QL focuses on supporting queries of static properties of programs:
what are the subclasses of class A? Do all subclasses of A override
method m? .QL queries are in expressiveness equivalent to globally
stratified Datalog 2.3.1 .QL queries were originally evaluated by trans-
lation to SQL queries (with an external fixpoint control), and exe-
cuted against relational database (supported databases are Microsoft

1.QL provides an Object-Oriented syntax that makes certain queries more con-
cise, and provide facilities for packaging up groups of queries as libraries. The syn-
tax, however, translates down to plain globally stratified Datalog, and requires no
semantic extensions.

172 Applications

SQL Server[5], PostgreSQL[6], and H2[3]). Performance concerns drove
Semmle to eventually implement an in-memory Datalog engine.

.QL’s goal is to enable Java or C++ programmers to write custom
queries to understand their code. To this end, .QL provides a large li-
brary of IDB rules, defining predicates that are useful in common code
queries. This particular usage scenario posed an interesting optimiza-
tion challenge: library rules cannot be written to perform well for all
queries. Thus, library rules must be optimized in the context of the
queries. This challenge drove the development of cost-based magic sets
optimizations [108] discussed in Section 3.3.

Doop. Doop[28, 29] is a points-to analysis framework for Java. Doop
is implemented in globally stratified Datalog, evaluated on a commer-
cial deductive database engine built by LogicBlox, Inc.[4]. Doop is the
only system to specify points-to analysis completely within Datalog.
Compare to previous attempts [123, 66], Doop declaratively specifies
on-the-fly call-graph construction, handles Java language features that
are crucial for the completeness of the analysis, such as reflection, na-
tive code, finalization.

Doop is the first declarative program analysis system shown to out-
perform hand-tuned program analysis written in imperative languages,
e.g. Java. Compared to PADDLE[70], the prior art program analysis for
Java, written in Java, Doop achieved over 10x speed-up on average, for
logically equivalent analysis. Doop is also the only analysis framework
to be able to scale up to sophisticated analysis, such as the 2-call-site-
sensitive analysis with a context-sensitive heap [29].

Perhaps surprisingly, Doop achieves its performance through no
use of optimization techniques that are particular to Datalog, such as
magic sets. Its performance is derived purely from applications of tra-
ditional query optimization techniques: the use of alternative indices,
and folding of commonly used sub-queries.

6.2 Declarative Networking

Declarative networking [76, 80, 77, 75] is a programming methodol-

6.2. Declarative Networking 173

ogy that enables developers to concisely specify network protocols and
services using a distributed recursive query language, and directly com-
pile these specifications into a dataflow framework for execution. This
approach provides ease and compactness of specification, and other
additional benefits such as optimizability and the potential for safety
checks.

As evidence of its widespread applicability, declarative networking
techniques have been used in several domains including fault tolerance
protocols, cloud computing, sensor networks, overlay network compo-
sitions, anonymity systems, mobile ad-hoc networks, secure networks,
network configuration management, network forensics, optimizations,
and as a basis for course projects in a distributed systems class. There
are currently a number of open-source implementations of declarative
networking, for instance, P2 [93] and RapidNet [101]. See Loo et.al. [78]
for a survey of recent use cases.

6.2.1 Network Datalog

We introduce the Network Datalog (NDlog) language used in declarative
networking with an example program shown below that implements the
Path-vector protocol, which computes in a distributed fashion, for every
node, the shortest paths to all other nodes in a network. The path-
vector protocol is used as the base routing protocol for exchanging
routes among Internet Service

sp1 path(@Src,Dest,Path,Cost) :- link(@Src,Dest,Cost), Path = [Src, Dest].
sp2 path(@Src,Dest,Path,Cost) :- link(@Src,Nxt,Cost1),

path(@Nxt,Dest,Path2,Cost2), Cost=Cost1+Cost2, Path = [Src, Path2].
sp3 spCost(@Src,Dest,min<Cost>) :- path(@Src,Dest,Path,Cost).
sp4 shortestPath(@Src,Dest,Path,Cost) :- spCost(@Src,Dest,Cost),

path(@Src,Dest,Path,Cost).
query(@Src,Dest,Path,Cost) :- shortestPath(@Src,Dest,Path,Cost).

The program has four rules (which for convenience we label
sp1-sp4), and takes as input a base (extensional) relation link(Src,
Dest, Cost). Rules sp1-sp2 are used to derive “paths” in the
graph, represented as tuples in the derived (intensional) relation
path(Src,Dest,Path,Cost). The Src and Dest fields represent the

174 Applications

source and destination endpoints of the path, and Path is the actual
path from Src to node Dest. The number and types of fields in relations
are inferred from their (consistent) use in the program’s rules.

Since network protocols are typically computations over distributed
network state, one of the important requirements of NDlog is the ability
to support rules that express distributed computations. NDlog builds
upon traditional Datalog by providing control over the storage location
of tuples explicitly in the syntax via location specifiers. To illustrate,
in the above program, each predicate has an “@” symbol prepended to
a single field denoting the location specifier. Each tuple generated is
stored at the address determined by its location specifier. For example,
each path and link tuple is stored at the address held in its first field
@Src.

Rule sp1 produces path tuples directly from existing link tu-
ples, and rule sp2 recursively produces path tuples of increasing
cost by matching (joining) the destination fields of existing links to
the source fields of previously computed paths. The matching is ex-
pressed using the repeated Nxt variable in link(Src,Nxt,Cost1) and
path(Nxt,Dest,Path2,Cost2) of rule sp2. Intuitively, rule sp2 says
that “if there is a link from node Src to node Nxt, and there is a path
from node Nxt to node Dest along a path Path2, then there is a path
Path from node Src to node Dest where Path is computed by prepend-
ing Src to Path2”. The matching of the common Nxt variable in link
and path corresponds to a join operation used in relational databases.

Given the path relation, rule sp3 derives the relation
spCost(Src,Dest,Cost) that computes the minimum cost
Cost for each source and destination for all input paths. Rule
sp4 takes as input spCost and path tuples and then finds
shortestPath(Src,Dest,Path,Cost) tuples that contain the shortest
path Path from Src to Dest with cost Cost. Last, the shortestPath
table is the output of interest.

6.2.2 Query Evaluation

In declarative networking, each node runs its own set of NDlog rules.
Typically, these rules are common across all nodes (that is, all nodes run

6.3. Data Integration and Exchange 175

the same protocol), but may further include per-node policy customiza-
tions. NDlog rules are compiled and executed as distributed dataflows
by the query processor to implement various network protocols.

To execute NDlog programs, declarative networking uses the
pipelined semi-naïve (PSN) model [75]. PSN extends the traditional
semi-naïve Datalog evaluation strategy to work in an asynchronous
distributed setting. PSN relaxes semi-naïve evaluation to the extreme
of processing each tuple as it is received. This provides opportunities for
additional optimizations on a per-tuple basis. New tuples that are gen-
erated from the semi-naïve rules, as well as tuples received from other
nodes, are used immediately to compute new tuples without waiting
for the current (local) iteration to complete.

In practice, most network protocols execute over a long period of
time and incrementally update and repair routing tables as the under-
lying network changes (for example, due to link failures, and node de-
partures). Incremental recursive view maintenance techniques [87, 91]
provide timely updates and for avoiding the overhead of recomputing
all routing tables “from scratch” whenever there are changes to the
underlying network.

The Dedalus [57, 17] language is similar to NDlog, except its be-
havior and output are defined in terms of a model-theoretic seman-
tics. Dedalus also allows users to write rules that mutate state. The
CALM Conjecture, posed by Hellerstein [57] states that monotonic
coordination-free Dedalus programs are eventually consistent, and non-
monotonic programs are eventually consistent when instrumented with
appropriate coordination. Recently, Ameloot et al. explored Heller-
stein’s CALM conjecture using relational transducers [18].

6.3 Data Integration and Exchange

Database management scenarios frequently involve cobbling together
heterogeneous data sources or schemas in order to query across them
or exchange data among them. This requirement has motivated two
closely-related threads of database research in recent years, data inte-
gration [55, 56] and data exchange [95, 43]. In each scenario, we are

176 Applications

given a source database and schema, a target database schema, and
a set of schema mappings in some logical formalism relating source
and target instances. In data integration, the goal is to answer queries
posed over the target schema by reformulating them as queries over
the source schema. In data exchange, the goal is to materialize a tar-
get instance which can be used to answer target queries directly. Both
data integration and data exchange also have “peer-to-peer” (PDMS)
variants in which the distinction between source and target schemas is
relaxed to allow more complex topologies.

Example 6.1. Consider (see Figure 6.1) a bioinformatics collaboration
scenario based on databases of interest to affiliates of the Penn Center
for Bioinformatics. In general, GUS, the Genomics Unified Schema [53]
covers gene expression, protein, and taxon (organism) information;
BioSQL, affiliated with the BioPerl project [1], covers very similar
concepts; and a third schema, uBio [8], establishes synonyms among
taxa. Instances of these databases contain taxon information that is
autonomously maintained but of mutual interest to the others. For the
purposes of our example, we show only one relational table in each of
the schemas, as follows. Peer GUS associates taxon identifiers, scien-
tific names, and what it considers canonical scientific names via rela-
tion g(gid,nam,can); peer BioSQL associates its own taxon identifiers
with scientific names via relation b(bid,nam); and peer uBio records
synonyms of scientific names via relation u(nam1,nam2).

The participants of the PDMS collaboration specify the relation-
ships among their databases using schema mappings.

Example 6.2. Continuing with Example 6.1, suppose it is agreed in this
collaboration that certain data in GUS should also be in BioSQL. This
is represented in Figure 6.1 by the arc labeled m1. The specification
g(G,N,C) → ∃B b(B,N) associated with m1 is read as follows: if
(G,N,C) in table g, the value N must also be in some tuple (B,N)
of table b, although the value B in a such a tuple is not determined.
The specification just says that there must be such a B and this is
represented by the existential quantification ∃B. Herem1 is an example
of schema mapping. Two other mappings are also shown in Figure 6.1.

6.3. Data Integration and Exchange 177

g(gid,nam,can)

GUS

b(bid,nam)

BioSQL

u(nam1,nam2)

uBio

m3

m1

m2

Tgds Rules.

(m1) g(G, N, C) → ∃B b(B, N)

b(f(N),N) :- g(G,N,C).

(m2) g(G, N, C) → u(N, C)

u(N,C) :- g(G,N,C).

(m3) b(B, M) ∧ u(M, N) → b(B, N)

b(B,N) :- b(B,M), u(M,N).

Figure 6.1: Mappings among three bioinformatics databases. On the right, tgd
mappings are shown along with their translations into Datalog rules.

Peer uBio should also have some of GUS’s data, as specified by m2.
Mapping m3 is quite interesting: it stipulates data in BioSQL based
on data in uBio but also on data already in BioSQL. As seen in m3,
relations from multiple peers may occur on either side. We also see that
individual mappings can be “recursive” and that cycles are allowed in
the graph of mappings.

Schema mappings are logical assertions that the data instances at
various peers are expected to jointly satisfy. We shall see that they cor-
respond to the well-known formalism of tuple-generating dependencies
(tgds) [26]. We shall also see that, as in data exchange [43], a large class
of mapping graph cycles can be handled safely, while certain complex
examples cause problems.

Thus, every PDMS specification begins with a collection of
peers/participants, each with its own relational schema, and a collec-
tion of schema mappings between some of these peers. Like the schemas,
the mappings are designed by the participants’ administrators. By join-
ing the collaboration, the participants agree to share the data from
their local databases. The sharing can be further modulated through
the mappings, which should therefore be subject to agreement between
participants.

Given a PDMS configuration of peers and schema mappings, the
question arises of how data should be propagated using the mappings,

178 Applications

and what should be the answer to a query asked by one of the peers.
The whole point of data integration is for such an answer to use data
from all the peers. In PDMS, we wish to accomplish this by material-
izing at every peer an instance containing not only the peer’s locally
contributed data, but also additional facts that must be true, given the
data at the other peers along with the constraints specified by the map-
pings. Queries at a peer will be answered using this local materialized
instance. However, while the mappings relating the peers tell us which
peer instances are together considered “acceptable,” they do not fully
specify the complete peer instances to materialize.

PDMS follows established practice in data integration, data ex-
change and incomplete information databases [11, 43] and uses certain
answers semantics: a tuple is “certain” if it appears in the query answer
no matter what data instances (satisfying the mappings) we apply the
query to. In virtual data integration, the certain answers to a query
are computed by reformulating the query across all peer instances us-
ing the mappings, and combining the answers together from the local
results computed at each peer. As in data exchange, PDMS materi-
alizes special local instances that can be used to compute the certain
answers. This makes query evaluation a fast, local process.

We illustrate this with our running example.

Example 6.3. Suppose the contents of g, u, and b are as shown in
Figure 6.2b. Note that the mappings of Figure 6.1 are not satisfied: for
example, g contains a tuple

(828917, “Oscinella frit”, “Drosophila melanogaster”)

but b does not contain any tuple with “Oscinella frit” which is a viola-
tion of m1. We patch this by adding to b a tuple (⊥1, “Oscinella frit”)
where ⊥1 represents the unknown value specified by ∃b in the map-
ping m1. We call ⊥1 a labeled null. Adding just enough patches to
eliminate all violations results in the data in Figure 6.2c. (Note that
sometimes patching one violation may introduce a new violation, which
in turn must be patched; hence this process is generally iterative, how-
ever under certain constraints it always terminates.) Observe that we
can replace ⊥1 and the other labeled nulls with combinations of arbi-

6.3. Data Integration and Exchange 179

gid nam can
828917 Oscinella frit Drosophila melanogaster
2616529 Musca domestica Musca domestica

(a) Table from GUS used in data exchange

nam1 nam2
bid nam
4472 Periplaneta americana

(b) Tables from uBio (left) and BioSQL (right) before data exchange

nam1 nam2

Oscinella frit Drosophila melanogaster
Musca domestica Musca domestica

bid nam
4472 Periplaneta americana
⊥1 Oscinella frit
⊥1 Drosophila melanogaster
⊥2 Musca domestica

(c) Updated tables after data exchange. Newly-inserted tuples are shaded.

Figure 6.2: Bioinformatics data exchange example

trary values and we get an entire class of data instances that satisfy
the mappings.

Now, consider two Datalog queries:

p(B,N) :- b(B,N), N = "Oscinella frit".
q(N) :- b(B,N), N = "Oscinella frit".

and let us see which answers are certain when we apply these queries to
the data instances obtained by replacing the labeled nulls with various
values. There is no tuple in common among the various answers p
produces, hence its certain answer semantics is empty. However, all
answers produced by q have the tuple (“Oscinella frit”) in common.
This is a certain answer for q.

The procedure we used in the example to resolve mapping violations
by patching instances is intuitive but it is not clear that (1) it always
works, and (2) the data instances obtained by replacing labeled nulls
with arbitrary values are representative of all instances satisfying the
mappings and therefore give us the certain answers. In fact, the theory
of data exchange [43] has resolved both these problems. Moreover, it
has established the following convenient query answering algorithm: to
obtain the certain answers to a query it suffices to evaluate the query
over a specifically computed data instance with labeled nulls (as if the

180 Applications

labeled nulls were ordinary values) and then to discard any tuples in
the result containing labeled nulls. As a consequence, PDMS systems
such as Orchestra [92] works with peer instances in which tuples may
contain labeled nulls (actually, in the slightly more complicated form
of skolem functions, as described in Chapter 5.4.)

6.4 Enterprise Software

The modern enterprise software stack—a collection of applications sup-
porting bookkeeping, analytics, planning, and forecasting for enterprise
data—is facing a variety of challenges for its increasing complexity: the
task of building and maintaining enterprise software is tedious and labo-
rious; applications are cumbersome for end-users; and adapting to new
computing hardware and infrastructures is difficult. Among others, the
LogicBlox platform [4] unifies the programming model for enterprise
software development that combines transactions with analytics, by
using a declarative language amenable to efficient evaluation schemes,
automatic parallelizations, and transactional semantics.

Next, we present an overview of the Dataloglb language used by
the LogicBlox platform, emphasizing extensions to support general-
purpose programming and the development of various components of
enterprise applications.

Rules. Dataloglb rules are specified using a <- notation (instead of
the traditional “:-”), as in the example below:

person(X) <- father(X,Y).
person(X) <- mother(X,Y).
grandfather(X,Z) <- father(X,Y), father(Y,Z) ; father(X,Y), mother(Y,Z).
mother(X) <- parent(X,Y), !father(X).

In this example, ; indicates disjunction while ! is used for negation.
The first two rules copy data from the father and mother predicates
into person. The third rule computes the grandfather predicate, es-
sentially as the union of two conjunctive queries. Finally, the fourth
rule specifies that all parents that are not fathers are mothers, with
negation interpreted under the stratified semantics.

6.4. Enterprise Software 181

Entity types and constraints. The main building-blocks of the Data-
loglb type system are entities, i.e., specially declared unary predicates
corresponding to some concrete object or abstract concept. The Data-
loglb type system also includes various primitive types (e.g., numeric
types, strings etc). For example, the following Dataloglb program de-
clares (using a -> notation) that person is an entity:
person(X) -> .

Entities can have various properties, expressed through predicates with
the corresponding entity as the type of some argument, for example:
ssn[X] = Y -> person(X), int[32](Y).
name[X] = N -> person(X), string(N).

The first declaration says that ssn is a functional predicate mapping
person entities to integer-valued Social Security Numbers, while the
second maps person entities to string names.

Entities can be arranged in subtyping hierarchies, e.g., the following
example declares that male is a subtype of person:
male(X) -> person(X).

As expected, subtypes inherit the properties of their supertypes and
can be used wherever instances of their supertypes are allowed by the
type system. For example, according to the declarations above, a male
also has an ssn and a name.

One can also use the -> notation to specify runtime integrity con-
straints, such as that every parent relationship is also either a father
or mother relationship, but not both:
parent(X,Y) -> father(X,Y), !mother(X,Y) ; mother(X,Y), !father(X,Y).

Updates and events. The needs of interactive applications motivate
procedural features in Dataloglb (inspired by previous work on Datalog
with updates [13] and states [82] presented in Section 5.5). For instance,
LogicBlox provides a framework for user interface (UI) programming
that allows the implementation of UIs over stored data through Data-
loglb rules. Apart from being able to populate the UI based on results
of Dataloglb programs, UI events are also handled through Dataloglb
rules that are executed in response to those events.

182 Applications

Example 6.4. Consider a simple application in which managers are
allowed to use a form to modify sales data for planning scenarios. This
form, including the title of the page, the values in a drop-down menu
and the text on a “submit” button, is generated by the Dataloglb rules
shown below.

sales_entry_form(F) -> form(F).

form_title[F] = "Sales Data Entry"
<- sales_entry_form(F).

component[F] = D, dropdown(D), label[D] = "item"
<- sales_entry_form(F).

submit_button[F] = B, label[B] = "submit"
<- sales_entry_form(F).

The selection of values for particular items from the drop-down menu,
specifying a UI view, also corresponds to a database view:

dropdown_values(D,I)
<- component[F] = D, sales_entry_form_user(F,U), modifiable_by(I,U).

UI events, such as when a submit button is pushed, are represented as
predicates, and one can write rules—such as the one below—that are
executed when these events happen:
^sales[P,D,S] = V

<- +button_clicked(F,S),
sales_entry_form_user(F,U), dropdown_selected[F] = P,
date_fld_value[F,_] = D, num_fld_value[F,_] = V, manager(S,U).

This is an example of what LogicBlox terms a delta rule2, used to
insert data into the EDB predicate sales. In this body, the atom
button_clicked(F,S) is preceded by the insert modifier “+”, which
indicates an insertion to the corresponding predicate. As a result, the
rule will only be fired when the submit button is pushed and the corre-
sponding fact is inserted in the button_clicked predicate. Similarly,
the symbol “ˆ” in the head is the upsert3 modifier, indicating that if

2This should not to be confused with the delta rules transformation used in
semi-naive evaluation.

3A combination of update and insert.

6.5. Other Applications 183

the corresponding key already exists in sales, its value should be up-
dated to the one produced by the rule, otherwise a new entry with this
key-value pair should be inserted.

Constructors. Dataloglb also allows the invention of new values dur-
ing program execution through the use of constructors (aka Skolem
functions) in the heads of rules. Dataloglb programs using recursion
through constructors are not guaranteed to terminate on all inputs.
For this reason, the Dataloglb compiler implements a safety check that
exploits the connection between Datalog evaluation and the chase pro-
cedure [86], and warns if termination cannot be guaranteed. (The same
safety check is used for programs using recursion through arithmetic.)

6.5 Other Applications

In addition to the above applications, we briefly survey other recent
use cases of Datalog in the domains of security, web data extraction,
concurrent programming, and answer-set programming.

6.5.1 Security

Secure Network Datalog (SeNDlog) language [125] unifies NDlog and
logic-based languages for access control in distributed systems. SeND-
log allows users to specify and implement distributed systems and
their security policies within a common declarative framework. The
SecureBlox [85] platform, developed in the LogicBlox [4] system, fur-
ther provides a richer set of features compared to SeNDlog: SecureBlox
supports 1) user-defined security constructs that can be customized
and composed in a declarative fashion, 2) meta-rules – Datalog rules
that operate on the rules of the program as input, and produce new
rules as output, and 3) meta-constraints – Datalog constraints that
restrict the allowable rules in the program. SecureBlox allows meta-
programmability for compile-time code generation based on the secu-
rity requirements and trust policies of the deployed environment.

184 Applications

6.5.2 Web data extraction

Web data extraction tools are used to aggregate information relevant to
a particular topic from different websites; the extracted information is
then presented to users in a single view. For instance, an aggregator of
financial news might use a web data extraction tool to collect financial
news from several major newspapers; an aggregator of product infor-
mation may crawl several e-retailers to collect the prices on the same
product. Extracting data from (HTML) webpages can be thought as
evaluating queries over an XML tree. A query may specify the types
of nodes of interest (e.g. tables, italics fonts), and place conditions on
the shape and contents of the nodes’ children or siblings. The result of
the query may be either text or entire XML subtrees.

Lixto [49] commercializes a tool for specifying extractions of
web data. Elog, Lixto’s query language, is an extension of monadic
Datalog—a restricted form of Datalog in which all intensional predi-
cates are unary. Elog queries can be evaluated efficiently, as monadic
Datalog over trees has the combined complexity of O(|P |∗|dom|), where
|P | is the size of the program, and |dom| the size of the tree. Further-
more, extraction queries written in Elog have the benefit of abstracting
over changes in the trees that are not relevant to the queries. This re-
sults in extractions that are more robust against often frequent changes
in the format of HTML pages on different websites.

6.5.3 Concurrent programming

Reactors [44] extend Datalog to provide higher level language abstrac-
tions to help programmers cope with the added complexities of pro-
gramming for concurrency. A reactor is a set of Datalog-like rules, with
additional constructs for identifying an event and its associated data,
referring to the state of the world before the event, and specifying the
updates to the world as a result of the event. These constructs together
support both asynchronous and synchronous composition of reactors.
Reactors bear resemblance to ECA, and similarly, to Statelog [83, 84],
with which ECA can be formalized with.

6.5. Other Applications 185

6.5.4 Answer-set programming

Answer-set programming is a form of logic programming that is partic-
ularly geared towards solving search problems that may have multiple
satisfying models, e.g. graph coloring. DLV [69] is an answer-set pro-
gramming language based on Datalog. DLV allows disjunctions in the
head of rules—a crucial language feature that allows the expression of
choices that can be made in searching for an answer. DLV allows the
expression of problems in the complexity class of Σp

2, in finite struc-
tures.

Acknowledgements

We would like to thank Chen Chen, Alex Gurney, Yang Li, Dong Lin,
Walaa Eldin Moustafa, Anduo Wang, and Zhuoyao Zhang for proof
reading this survey paper. We also like to thank the reviewers for their
extremely thorough and helpful reviews, and Joseph M. Hellerstein for
all his guidance and support throughout the entire process of writ-
ing this survey paper. This survey paper is in part supported by NSF
grants IIS-0812270, CCF-0820208, CNS-0845552, CNS-1040672, CNS-
1117052, and CNS-1218066.

186

References

[1] BioPerl, http://bioperl.org.
[2] Datomic website, http://www.datomic.com/.
[3] H2 Database Engine, http://www.h2database.com.
[4] LogicBlox website, http://www.logicblox.com/.
[5] Microsoft SQL server, http://www.microsoft.com/sql.
[6] PostgreSQL, http://www.postgresql.org/.
[7] Semmle Web site, http://www.semmle.com.
[8] uBio, http://www.ubio.org.
[9] S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic languages to

express deterministic transformations. In PODS, 1990.
[10] Serge Abiteboul, Zoe Abrams, Stefan Haar, and Tova Milo. Diagnosis

of Asynchronous Discrete Event Systems—Datalog to the Rescue! In
PODS, 2005.

[11] Serge Abiteboul and Oliver Duschka. Complexity of answering queries
using materialized views. In PODS, 1998.

[12] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[13] Serge Abiteboul and Victor Vianu. Datalog extensions for database
queries and updates. J. Comput. Syst. Sci., 43:62–124, August 1991.

[14] Foto Afrati, Stavros S. Cosmadakis, and Mihalis Yannakakis. On dat-
alog vs. polynomial time. In PODS, 1991.

187

188 References

[15] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M.
Hellerstein, and Russell Sears. Boom analytics: exploring data-centric,
declarative programming for the cloud. In EuroSys, 2010.

[16] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-
czak. Consistency analysis in bloom: a calm and collected approach. In
CIDR, 2011.

[17] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and space.
Technical Report UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[18] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational
Transducers for Declarative Networking. In PODS, 2011.

[19] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. pages 89–148, 1988.

[20] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zan-
iolo. The deductive database system LDL++. TPLP, 3(1):61–94, 2003.

[21] I. Balbin and K. Ramamohanarao. A generalization of the differential
approach to recursive query evaluation. Journal of Logic Programming,
4(3), 1987.

[22] Francois Bancilhon. Naive evaluation of recursively defined relations.
On Knowledge Base Management Systems: Integrating AI and DB Tech-
nologies, 1986.

[23] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduc-
tion to recursive query processing strategies. SIGMOD Rec., 15(2):16–
52, 1986.

[24] BDD-Based Deductive DataBase. http://bddbddb.sourceforge.
net/.

[25] Catriel. Beeri and Raghu. Ramakrishnan. On the power of magic. In
PODS, 1987.

[26] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data depen-
dencies. J. ACM, 31(4):718–741, 1984.

[27] Nicole Bidoit. Bases de Données Déductives: Présentation de Datalog.
Armand Colin, 1992.

[28] Martin Bravenboer and Yannis Smaragdakis. Doop website,
http://doop.program-analysis.org/.

[29] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In OOPSLA, 2009.

http://bddbddb.sourceforge.net/
http://bddbddb.sourceforge.net/

References 189

[30] R.E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[31] Dario Campagna, Beata Sarna-Starosta, and Tom Schrijvers. Optimiz-
ing Inequality Joins in Datalog with Approximated Constraint Propa-
gation. In Claudio Russo and Neng-Fa Zhou, editors, Practical Aspects
of Declarative Languages, 14th International Symposium, Proceedings.
Springer, 2012.

[32] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE TKDE, 1(1):146–166,
1989.

[33] Stefano Ceri, Georg Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[34] Keith L. Clark. Negation as failure. In Logic and Data Bases, pages
293–322, 1977.

[35] Sara Cohen, Joseph Gil, and Evelina Zarivach. Datalog programs over
infinite databases, revisited. In DBPL, 2007.

[36] Robert M. Colomb. Deductive Databases and their Applications. Taylor
and Francis, 1998.

[37] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
and David Maier. Logic and lattices for distributed programming. In
SoCC, 2012.

[38] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In POPL, 1977.

[39] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical
program analysis using general purpose logic programming systems—a
case study. In PLDI, 1996.

[40] Alin Deutsch and Val Tannen. Reformulation of xml queries and con-
straints. In ICDT, pages 225–241, 2003.

[41] Guozhu Dong, Leonid Libkin, Jianwen Su, and Limsoon Wong. Main-
taining transitive closure of graphs in sql. In Int. J. Information Tech-
nology, 5, 1999.

[42] Guozhu Dong and Jianwen Su. Incremental and decremental evaluation
of transitive closure by first-order queries. Inf. Comput., 120(1):101–106,
1995.

190 References

[43] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. TCS, 336(1):89–124,
2005.

[44] John Field, Maria-Cristina Marinescu, and Christian Stefansen. Reac-
tors: A data-oriented synchronous/asynchronous programming model
for distributed applications. Theor. Comput. Sci., 410(2-3):168–201,
2009.

[45] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Total and partial
well-founded datalog coincide. In ICDT, 1997.

[46] Jörg Flum, Max Kubierschky, and Bertram Ludäscher. Games and total
datalog¬ queries. Theoretical Computer Science, 239(2):257–276, 2000.

[47] Allen Van Gelder. The alternating fixpoint of logic programs with nega-
tion. JCSS, 47(1):185 – 221, 1993.

[48] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In ICLP/SLP, pages 1070–1080, 1988.

[49] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog,
and Sergio Flesca. The Lixto data extraction project: back and forth
between theory and practice. In PODS, 2004.

[50] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Update exchange with mappings and provenance. In VLDB, 2007.

[51] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, 2007.

[52] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In SIGMOD, 1993.

[53] GUS: The Genomics Unified Schema. http://www.gusdb.org/.
[54] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:

Scalable source code queries with datalog. In David Thomas, editor,
ECOOP, 2006.

[55] Alon Y. Halevy. Answering queries using views: A survey. VLDB Jour-
nal, 10(4):270–294, 2001.

[56] Y. Halevy, G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation
for large-scale semantic data sharing. VLDB Journal, 14(1):68–83, 2005.

[57] Joseph M. Hellerstein. Declarative imperative: Experiences and conjec-
tures in distributed logic. 2010. SIGMOD Record 39(1).

[58] Neil Immerman. Relational queries computable in polynomial time.
Information and Control, 68(1-3):86–104, 1986.

http://www.gusdb.org/

References 191

[59] IRIS (Integrated Rule Inference System) Reasoner. http://www.
iris-reasoner.org/.

[60] Trevor Jim. SD3: A Trust Management System With Certified Evalu-
ation. In IEEE Symposium on Security and Privacy, May 2001.

[61] David B. Kemp. Efficient recursive aggregation and negation in deduc-
tive databases. TKDE, 10(5), 1998.

[62] Michael Kifer. On the decidability and axiomatization of query finite-
ness in deductive databases. JACM, 45(4):588–633, July 1998.

[63] Michael Kifer, Raghu Ramakrishnan, and Abraham Silberschatz. An
axiomatic approach to deciding query safety in deductive databases. In
PODS, 1988.

[64] Anthony C. Klug. Equivalence of relational algebra and relational calcu-
lus query languages having aggregate functions. J. ACM, 29(3):699–717,
1982.

[65] Ravi Krishnamurthy, Raghu Ramakrishnan, and Oded Shmueli. A
framework for testing safety and effective computability of extended
datalog. In SIGMOD, 1988.

[66] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-
tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In PODS, 2005.

[67] Laurent Vieille. Recursive Axioms in Deductive Database: The Query-
Subquery Approach. In 1st International Conference on Expert
Database Systems, 1986.

[68] Maurizio Lenzerini. Data integration: A theoretical perspective. In
PODS, 2002.

[69] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The dlv system for
knowledge representation and reasoning. ACM Trans. Comput. Logic,
7(3):499–562, July 2006.

[70] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, McGill University, January 2006.

[71] Senlin Liang and Michael Kifer. Deriving predicate statistics in datalog.
In PPDP, 2010.

[72] Leonid Libkin. Elements Of Finite Model Theory. Springer, 2004.
[73] Changbin Liu, Lu Ren, Boon Thau Loo, Yun Mao, and Prithwish Basu.

Cologne: A declarative distributed constraint optimization platform. In
VLDB, 2012.

http://www.iris-reasoner.org/
http://www.iris-reasoner.org/

192 References

[74] A. Livchak. Languages for polynomial-time queries. Computer-based
modeling and optimization of heat-power and electrochemical objects,
1992. In Russian.

[75] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy
Roscoe, and Ion Stoica. Declarative Networking: Language, Execution
and Optimization. In SIGMOD, 2006.

[76] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timo-
thy Roscoe, and Ion Stoica. Declarative networking. Commun. ACM,
52(11):87–95, 2009.

[77] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis,
Timothy Roscoe, and Ion Stoica. Implementing Declarative Overlays.
In SOSP, 2005.

[78] Boon Thau Loo, Harjot Gill, Changbin Liu, Yun Mao, William R. Mar-
czak, Micah Sherr, Anduo Wang, and Wenchao Zhou. Recent advances
in declarative networking. In Fourteenth International Symposium on
Practical Aspects of Declarative Languages (PADL), 2012.

[79] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Timo thy
Roscoe, and Ion Stoica. Analyzing P2P Overlays with Recursive
Queries. Technical Report UCB-CS-04-1301, UC Berkeley, 2004.

[80] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakr-
ishnan. Declarative routing: extensible routing with declarative queries.
In SIGCOMM, 2005.

[81] Boon Thau Loo, Sailesh Krishnamurthy, and Owen Cooper. Distributed
Web Crawling over DHTs. Technical Report UCB-CS-04-1305, UC
Berkeley, 2004.

[82] Bertram Ludäscher. Integration of Active and Deductive Database
Rules, volume 45 of DISDBIS. Infix Verlag, St. Augustin, Germany,
1998. PhD thesis.

[83] Bertram Ludäscher, Ulrich Hamann, and Georg Lausen. A logical
framework for active rules. In COMAD, 1995.

[84] Bertram Ludäscher, Wolfgang May, and Georg Lausen. Nested trans-
actions in a logical language for active rules. In LID, 1996.

[85] William R. Marczak, Shan Shan Huang, Martin Bravenboer, Micah
Sherr, Boon Thau Loo, and Molham Aref. Secureblox: customizable
secure distributed data processing. In SIGMOD, 2010.

References 193

[86] Michael Meier, Michael Schmidt, and Georg Lausen. On chase termi-
nation beyond stratification. PVLDB, 2(1):970–981, 2009.

[87] Mengmeng Liu and Nicholas Taylor and Wenchao Zhou and Zachary
Ives and Boon Thau Loo. Recursive Computation of Regions and Con-
nectivity in Networks. In ICDE, 2009.

[88] Jack Minker. Logic and databases: A 20 year retrospective. In Dino
Pedreschi and Carlo Zaniolo, editors, Logic in Databases, volume 1154
of Lecture Notes in Computer Science, pages 1–57. Springer Berlin /
Heidelberg, 1996. 10.1007/BFb0031734.

[89] Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-
sets in a relational database system. In SIGMOD, 1994.

[90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan.
The magic of duplicates and aggregates. In VLDB, 1990.

[91] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Main-
taining distributed logic programs incrementally. In 13th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP), 2011.

[92] Orchestra Collaborative Data Sharing System. http://code.google.
com/p/penn-orchestra/.

[93] P2: Declarative Networking System. http://p2.cs.berkeley.edu.
[94] Christos H. Papadimitriou. A note on the expressive power of prolog.

Bulletin of the EATCS, 26:21–22, 1985.
[95] Lucian Popa, Yannis Velegrakis, Mauricio A. Hernández, Renée J.

Miller, and Ronald Fagin. Translating web data. In VLDB, 2002.
[96] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive

horn clauses with infinite relations. In PODS, 1987.
[97] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Su-

darshan. Efficient Incremental Evaluation of Queries with Aggregation.
In SIGMOD, pages 204–218, 1992.

[98] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Su-
darshan. Efficient incremental evaluation of queries with aggregation.
In SIGMOD, 1994.

[99] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen
Seshadri. The CORAL deductive system. VLDB Journal, 3(2):161–
210, 1994.

http://code.google.com/p/penn-orchestra/
http://code.google.com/p/penn-orchestra/
http://p2.cs.berkeley.edu

194 References

[100] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research
on Deductive Database Systems. Journal of Logic Programming,
23(2):125–149, 1993.

[101] RapidNet Declarative Networking Engine. http://netdb.cis.upenn.
edu/rapidnet/.

[102] Thomas Reps. Demand interprocedural program analysis using logic
databases. Applications of Logic Databases, pages 163–196, 1994.

[103] Kenneth Ross. A syntactic stratification condition using constraints. In
ILPS, 1994.

[104] Kenneth A. Ross. Modular stratification and magic sets for datalog
programs with negation. J. ACM, 41:1216–1266, November 1994.

[105] Kenneth A. Ross. Structural totality and constraint stratification. In
PODS, 1995.

[106] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deduc-
tive databases. Journal of Computer and System Sciences, 54(1):79–97,
1997.

[107] Y. Sagiv and M. Y. Vardi. Safety of datalog queries over infinite
databases. In PODS, 1989.

[108] Damien Sereni, Pavel Avgustinov, and Oege de Moor. Adding magic to
an optimising datalog compiler. In SIGMOD, 2008.

[109] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff
Leung, Raghu Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and
S. Sudarshan. Cost-based optimization for magic: Algebra and imple-
mentation. In SIGMOD, 1996.

[110] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction predi-
cates. In VLDB, 2007.

[111] Divesh Srivastava and Raghu Ramakrishnan. Pushing constraint selec-
tions. In PODS, 1992.

[112] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
2nd edition, 1994.

[113] Michael Stonebraker and Joseph M. Hellerstein, editors. Readings in
Database Systems, Third Edition. Morgan Kaufmann, 1998.

[114] Peter J. Stuckey and S. Sudarshan. Compiling query constraints (ex-
tended abstract). In PODS, 1994.

http://netdb.cis.upenn.edu/rapidnet/
http://netdb.cis.upenn.edu/rapidnet/

References 195

[115] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in
deductive databases. In VLDB, 1991.

[116] Frank Tip. A survey of program slicing techniques. Journal of Pro-
gramming Languages, 3:121–189, 1995.

[117] Jeffrey D. Ullman. Implementation of logical query languages for
databases. ACM Trans. Database Syst., 10:289–321, September 1985.

[118] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems:
Volume II: The New Technologies. W. H. Freeman & Co., New York,
NY, USA, 1990.

[119] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23:733–742, October 1976.

[120] Allen Van Gelder. The well-founded semantics of aggregation. In PODS,
1992.

[121] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. J. ACM, 38:619–649,
July 1991.

[122] Moshe Y. Vardi. The complexity of relational query languages. In
STOC, 1982.

[123] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI, 2004.

[124] Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan-Kaufmann, 1996.

[125] Wenchao Zhou, Yun Mao, Boon Thau Loo, and Martín Abadi. Unified
Declarative Platform for Secure Networked Information Systems. In
ICDE, 2009.

	Introduction
	Contributions and Roadmap
	Relationship with Previous Surveys
	First Example: All-Pairs Reachability

	Language and Semantics
	Language
	Semantics
	Negation
	Aggregation

	Recursive Query Processing
	Bottom-up Evaluation
	Top-down Evaluation
	Magic Sets

	Incremental Maintenance
	Counting Algorithm for Non-recursive Queries
	Delete and Re-Derive Algorithm (DRed)
	Provenance-based Incremental Maintenance
	Incremental Maintenance for Negation and Aggregates

	Datalog Extensions
	Beyond Stratified Negation
	Beyond Stratified Aggregation
	Arithmetic and Infinite Relations
	Functors
	States and Updates

	Applications
	Program Analysis
	Declarative Networking
	Data Integration and Exchange
	Enterprise Software
	Other Applications

	Acknowledgements
	References

