# CSE544 Data Management

Lectures 15
Parallel Query Processing

#### Announcements

- Poster presentations:
  - Friday: 10am ?? In the atrium
  - No access to the CS printer? → Walter!
  - Please bring a laptop to give a demo

Review of the Snowflake paper was due today

Homework 5 will be posted on Wednesday

# Outline

MapReduce

Snowflake

Optimal parallel algorithm

#### References

- Jeffrey Dean and Sanjay Ghemawat,
   MapReduce: Simplified Data Processing on Large Clusters. OSDI'04
- D. DeWitt and M. Stonebraker. Mapreduce a major step backward. In Database Column (Blog), 2008.

# Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file partitioned into chunks (64MB)
- Each chunk replicated (≥3 times) why?
- Implementations:
  - Google's DFS: GFS, proprietary
  - Hadoop's DFS: HDFS, open source

# MapReduce

- Google:
  - Started around 2000
  - Paper published 2004
  - Discontinued September 2019
- Free variant: Hadoop

 MapReduce = high-level programming model and implementation for large-scale parallel data processing

## **Data Model**

Files!

A file = a bag of (key, value) pairs

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

# Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in input file

# Step 2: the REDUCE Phase

User provides the REDUCE function:

- Input: (intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

# Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
  - The key = document id (did)
  - The value = set of words (word)

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```

# MapReduce = GroupBy-Aggregate

Occurrence(docID, word)

```
select word, count(*)
from Occurrence
group by word
```

#### **MAP**

#### **REDUCE**



#### Jobs v.s. Tasks

- A MapReduce Job
  - One simple "query", e.g. count words in docs
  - Complex queries may require many jobs

- A Map <u>Task</u>, or a Reduce <u>Task</u>
  - A group of instantiations of the map-, or reduce-function, to be scheduled on a single worker

#### Workers

 A worker is a process that executes one task at a time

 Typically there is one worker per processor, hence 4 or 8 per node

## **Fault Tolerance**

If one server fails once every year...
 ... then a job with 10,000 servers will fail in less than one hour

- MapReduce handles fault tolerance by writing intermediate files to disk:
  - Mappers write file to local disk
  - Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server



# MapReduce Execution Details



# MapReduce Phases



# Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M
  map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

# Interesting Implementation Details

#### Worker failure:

Master pings workers periodically,

If down then reassigns the task to another worker

# Interesting Implementation Details

#### Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks.
  - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
  - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

# MapReduce v.s. Databases

#### Blog by DeWitt and Stonebraker

- "Schemas are good"
- "Indexes"
- "Skew" (MR mitigates it somewhat, how?)
- The M \* R problem what is it?
- "Parallel databases uses push (to sockets) instead of pull" – what's the point?

# Snowflake - Discussion

 "The Snowflake Elastic Data Warehouse", Dageville et al., SIGMOD'2016

 It is an SaaS – what is this? Give other examples of types of cloud services...

- It is an SaaS what is this? Give other examples of types of cloud services...
- SaaS = software as a service
- Other examples:
  - Platform as a service (PaaS): e.g. Amazon's
     EC
  - Infrastructure as a service (virtual machines)
  - Software as a Service
  - Function as a Service: Amazon's Lambda

Describe Snowflake's Data Storage

Describe Snowflake's Data Storage

#### In class:

- S3:PUT/GET/DELETE
- Table → horizontal partition in <u>files</u>
- Blobs+PAX
- Temp storage → S3



Figure 1: Multi-Cluster, Shared Data Architecture

Describe Elasticity in Snowflake

Describe failure handling in Snowflake

- Describe Elasticity in Snowflake
  - Virtual Warehouse (VW) serves one user
  - T-Shirt sizes: X-Small ... XX-Large
  - Small query may run on subset of VW
- Describe failure handling in Snowflake

- Describe Elasticity in Snowflake
  - Virtual Warehouse (VW) serves one user
  - T-Shirt sizes: X-Small ... XX-Large
  - Small query may run on subset of VW
- Describe failure handling in Snowflake
  - Restart the query
  - No partial retries (like MapReduce or Spark)

Describe its execution engine

Describe its execution engine

Column-oriented (in class)

Vectorized ("tuple batches" – in class)

Push-based (in class)

What does Snowflake use instead of indexes?

What does Snowflake use instead of indexes?

 "Pruning": for each file (recall: this is a horizontal partition of a table) and each attribute, it stores the min/max values in that column in that file; may skip files when not needed.

# Parallel Processing of Complex Queries

## Communication v.s. Rounds

- Multi-join Query: R ⋈ S ⋈ T ⋈ K
- Solution 1: use multiple rounds:
  - Round 1:  $R \bowtie S$
  - Round 2: (R  $\bowtie$  S)  $\bowtie$  T
  - Round 3:  $((R \bowtie S) \bowtie T) \bowtie K$
  - . . .
- Solution 2: use a single round, with more communication

#### Outline

Basics

Unequal Inputs

Skew

Multiple rounds

#### The Triangles Query

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

Round 1:  $Temp(x,y,z) = R(x,y) \land S(y,z)$ 

Round 2:  $Q(x,y,z) = \text{Temp}(x,y,z) \wedge T(z,x)$ 

Problem: |Temp| >> m

### The Triangles Query

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

#### Algorithm in one round!

- [Afrati'10] Shares Algo (MapReduce)
- [Beame'13,'14] HyperCube Algo (MPC)

#### Triangles in One Round

- Place servers in a cube  $p = p^{1/3} \times p^{1/3} \times p^{1/3}$
- Each server identified by (i,j,k)
- Choose 3 random, independent hash functions:

 $h_1$ : Dom  $\rightarrow [p^{1/3}]$ 

 $h_2$ : Dom  $\rightarrow$  [p<sup>1/3</sup>]

 $h_3$ : Dom  $\rightarrow$  [p<sup>1/3</sup>]



#### Triangles in One Round



#### Round 1

Send R(x,y) to all servers  $(h_1(x),h_2(y),^*)$ Send S(y,z) to all servers  $(*,h_2(y),h_3(z))$ Send T(z,x) to all servers  $(h_1(x),*,h_3(z))$ 

#### **Output**:

compute locally  $R(x,y) \wedge S(y,z) \wedge T(z,x)$ 



#### **Communication Cost**

**Theorem** HyperCube has load  $L = O(m/p^{2/3})$  w.h.p., on any input database without skew.

Skew threshold: m/p<sup>1/3</sup> or lower

This load is optimal, even for data without skew

#### Recap

- So far we discussed:
  - Join L = m/p
  - Triangles  $L = m/p^{2/3}$
- How do we compute a full CQ?

$$\mathbf{Q}(\mathbf{x_1},\dots,\mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell})$$

- Hypercube: p = p<sub>1</sub> \* p<sub>2</sub> \* ... \* p<sub>k</sub>
- Optimize shares p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub> to minimize L

$$\mathbf{Q}(\mathbf{x_1}, \dots, \mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell})$$

$$|S_1| = |S_2| = \dots = m$$

#### Review

**Definition**. A <u>fractional vertex cover</u> of a hypergraph are weights  $v1 \dots, v_k$  s.t. for each hyperedge, the sum of its weights is  $\geq 1$ 







$$\mathbf{Q}(\mathbf{x_1},\dots,\mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell})$$

$$|S_1| = |S_2| = \dots = m$$

### **Optimal Shares**

**Theorem**. The optimal shares are  $p_i = p^{vi^*/T^*}$ .

The optimal load is  $L = O(m/p^{1/\tau^*})$  on databases without skew.



#### Discussion

- Hypercube algorithm: communication only
  - We do not discuss the local computation
- Optimal algorithm = optimal vertex cover
- Load  $m/p^{1/\tau^*}$  depends on input, not output!

Many restrictions...

Next: remove restrictions

### **Unequal Inputs**

#### Motivation

- Cardinalities m<sub>1</sub>, m<sub>2</sub>, ... are the simplest kind of data statistics
- State of the art: even the simplest optimizers today use cardinalities
- E.g.: R ⋈ S: if R >> S, then broadcast S

• What is the optimal load  $L = f(m_1, m_2, ...)$ ?

#### Warm up: Cartesian Product

$$Q(x,y) = S_1(x) \wedge S_2(y), \qquad |S_1| = m_1 |S_2| = m_2$$

$$|S_1| = m_1 |S_2| = m_2$$

Fact Optimal load

$$\mathbf{L}_{\mathsf{opt}} = 2\left(\frac{\mathbf{m_1}\mathbf{m_2}}{\mathbf{p}}\right)^{1/2}$$



**Proof** optimal when

$$m_1 / p_1 = m_2 / p_2 = (m_1 m_2 / p)^{1/2}$$

If m<sub>1</sub> << m<sub>2</sub> then it becomes broadcast join!

$$S_2(y) \rightarrow$$

$$\mathbf{Q}(\mathbf{x}_1, \dots, \mathbf{x}_c) = \mathbf{S}_1(\mathbf{x}_1) \wedge \dots \wedge \mathbf{S}_c(\mathbf{x}_c)$$

$$\begin{aligned} & \textbf{Fact. Optimal load} \\ & \mathbf{L}_{\text{opt}} = \mathbf{c} \left( \frac{\mathbf{m_1} \cdots \mathbf{m_c}}{\mathbf{p}} \right)^{\mathbf{1/c}} \end{aligned}$$

 $\mathbf{Q}(\mathbf{x_1},\dots,\mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell}) \qquad \text{Relations sizes= } \mathbf{m_1},\,\mathbf{m_2},\,\dots$ 

### A Simple Lower Bound on L

**Definition**. A <u>edge packing</u> is a set of atoms  $S_{j_1}, \dots S_{j_c}$  that do not share any variables.

 $\begin{aligned} &\text{Fact. For any packing, } \mathbf{S_{j_1}}, \cdots \mathbf{S_{j_c}} \text{ any 1-round algorithm} \\ &\text{computing Q has load} \quad \mathbf{L} \geq \mathbf{c} \left( \frac{\mathbf{m_{j_1} \cdots m_{j_c}}}{p} \right)^{1/c} \end{aligned}$ 

**Proof** To compute Q, the algorithm must also compute  $S_{j_1} \times \cdots \times S_{j_c}$ 

 $\mathbf{Q}(\mathbf{x_1},\dots,\mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell}) \qquad \text{Relations sizes= } \mathbf{m_1},\,\mathbf{m_2},\,\dots$ 

### Background

**Definition**. A <u>fractional edge packing</u> of a hypergraph are weights u<sub>1</sub> ..., u<sub>I</sub> s.t. for each node, the sum of its weights is ≤ 1







 $\mathbf{Q}(\mathbf{x_1},\dots,\mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell}) \qquad \text{Relations sizes= } \mathbf{m_1},\,\mathbf{m_2},\,\dots$ 

### Optimal Load L

$$\text{Define} \quad L(\mathbf{u}) \stackrel{\mathrm{def}}{=} \left(\frac{\mathbf{m_1}^{\mathbf{u_1}} \cdot \mathbf{m_2}^{\mathbf{u_2}} \cdots \mathbf{m_\ell}^{\mathbf{u_\ell}}}{p}\right)^{\frac{1}{\mathbf{u_1} + \mathbf{u_2} + \cdots + \mathbf{u_\ell}}}$$

For any fractional edge packing u

**Theorem** Optimal 1-round load is L = max<sub>u</sub> L(u)

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$



$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

$$\begin{split} L(u) &= \\ &\left(\frac{m_R{}^{u_R} \cdot m_S{}^{u_S} \cdot m_T{}^{u_T}}{p}\right)^{\frac{1}{u_R + u_S + u_T}} \end{split}$$

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$





$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

| Vertex of edge packing polytope u <sub>R</sub> , u <sub>S</sub> , u <sub>T</sub> | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{\mathbf{p}}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | 1<br>+u <sub>S</sub> +u <sub>T</sub> |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1/2, 1/2, 1/2                                                                    |                                                                                                                                                                                                                    |                                      |
| 1, 0, 0                                                                          |                                                                                                                                                                                                                    |                                      |
| 0, 1, 0                                                                          |                                                                                                                                                                                                                    |                                      |
| 0, 0, 1                                                                          |                                                                                                                                                                                                                    |                                      |
| 0, 0, 0                                                                          |                                                                                                                                                                                                                    |                                      |



$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

| Vertex of edge packing polytope u <sub>R</sub> , u <sub>S</sub> , u <sub>T</sub> | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{\mathbf{p}}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | $\frac{1}{+\mathrm{u_S}+\mathrm{u_T}}$ |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1/2, 1/2, 1/2                                                                    | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                                    |                                        |
| 1, 0, 0                                                                          | m <sub>R</sub> / p                                                                                                                                                                                                 |                                        |
| 0, 1, 0                                                                          | m <sub>S</sub> / p                                                                                                                                                                                                 |                                        |
| 0, 0, 1                                                                          | m <sub>T</sub> / p                                                                                                                                                                                                 |                                        |
| 0, 0, 0                                                                          | 0                                                                                                                                                                                                                  |                                        |





1/2 1/2 0

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

| Luge packing  | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{p}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | Max when | HC Algorithm $\mathbf{p^{e_x} \cdot p^{e_y} \cdot p^{e_z}}$ |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------|
| 1/2, 1/2, 1/2 | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                           |          |                                                             |
| 1, 0, 0       | m <sub>R</sub> / p                                                                                                                                                                                        |          |                                                             |
| 0, 1, 0       | m <sub>S</sub> / p                                                                                                                                                                                        |          |                                                             |
| 0, 0, 1       | m <sub>T</sub> / p                                                                                                                                                                                        |          |                                                             |
| 0, 0, 0       | 0                                                                                                                                                                                                         |          |                                                             |

1/2 1/2 0

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

| Vertex of edge packing polytope u <sub>R</sub> , u <sub>S</sub> , u <sub>T</sub> | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{\mathbf{p}}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | Max when | $\mathbf{p^{e_x} \cdot p^{e_y} \cdot p^{e_z}}$ |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|
| 1/2, 1/2, 1/2                                                                    | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                                    |          |                                                |
| 1, 0, 0                                                                          | m <sub>R</sub> / p                                                                                                                                                                                                 |          |                                                |
| 0, 1, 0                                                                          | m <sub>s</sub> / p                                                                                                                                                                                                 |          |                                                |
| 0, 0, 1                                                                          | m <sub>T</sub> / p                                                                                                                                                                                                 |          |                                                |
| 0, 0, 0                                                                          | 0                                                                                                                                                                                                                  | never    |                                                |

1/2 1/2 0

| $Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z)$ | ,x) |
|-----------------------------------------------|-----|
|-----------------------------------------------|-----|

|               | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{p}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | Max when                      | HC Algorithm $\mathbf{p^{e_x} \cdot p^{e_y} \cdot p^{e_z}}$ |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|
| 1/2, 1/2, 1/2 | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                           | $m_R \approx m_S \approx m_T$ | $e_x$ , $e_y$ , $e_z > 0$                                   |
| 1, 0, 0       | m <sub>R</sub> / p                                                                                                                                                                                        |                               |                                                             |
| 0, 1, 0       | m <sub>S</sub> / p                                                                                                                                                                                        |                               |                                                             |
| 0, 0, 1       | m <sub>T</sub> / p                                                                                                                                                                                        |                               |                                                             |
| 0, 0, 0       | 0                                                                                                                                                                                                         | never                         |                                                             |

1/2 1/2 0

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

|               | $\begin{split} \mathbf{L}(\mathbf{u}) &= \\ \left(\frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{\mathbf{p}}\right)^{\overline{\mathbf{u_R}}} \end{split}$ | Max when                                                                                                            | HC Algorithm $\mathbf{p^{e_x} \cdot p^{e_y} \cdot p^{e_z}}$ |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1/2, 1/2, 1/2 | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                                    | $m_R \approx m_S \approx m_T$                                                                                       | $e_x$ , $e_y$ , $e_z > 0$                                   |
| 1, 0, 0       | m <sub>R</sub> / p                                                                                                                                                                                                 | $egin{aligned} rac{\mathbf{m_R}}{\mathbf{p}} \geq \sqrt{rac{\mathbf{m_S}\mathbf{m_T}}{\mathbf{p}}} \end{aligned}$ | $e_z = 0$ join R with product S×T                           |
| 0, 1, 0       | m <sub>S</sub> / p                                                                                                                                                                                                 |                                                                                                                     |                                                             |
| 0, 0, 1       | m <sub>T</sub> / p                                                                                                                                                                                                 |                                                                                                                     |                                                             |
| 0, 0, 0       | 0                                                                                                                                                                                                                  | never                                                                                                               |                                                             |

 $Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$ 



| Vertex of                                        | $\mathbf{L}(\mathbf{u}) =$                                                                                                                                                                                       | Max when                                                                                                              | HC Algorithm                                           |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| edge packing polytope                            | $\left( \frac{\mathbf{m_R}^{\mathbf{u_R}} \cdot \mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}}{\mathbf{m_S}^{\mathbf{u_S}} \cdot \mathbf{m_T}^{\mathbf{u_T}}} \right)^{\overline{\mathbf{u_R}}}$ | 1<br>+u <sub>S</sub> +u <sub>T</sub>                                                                                  | $\mathbf{p^{e_x} \cdot p^{e_y} \cdot p^{e_z}}$         |  |  |
| u <sub>R</sub> , u <sub>S</sub> , u <sub>T</sub> | <b>p</b>                                                                                                                                                                                                         |                                                                                                                       |                                                        |  |  |
| 1/2, 1/2, 1/2                                    | $(m_R m_S m_T)^{1/3} / p^{2/3}$                                                                                                                                                                                  | $m_R \approx m_S \approx m_T$                                                                                         | $\mathbf{e}_{x},  \mathbf{e}_{y},  \mathbf{e}_{z} > 0$ |  |  |
| 1, 0, 0                                          | m <sub>R</sub> / p                                                                                                                                                                                               | $egin{aligned} rac{\mathbf{m_R}}{\mathbf{p}} & \geq \sqrt{rac{\mathbf{m_S}\mathbf{m_T}}{\mathbf{p}}} \end{aligned}$ | $e_z = 0$ join R with product S×T                      |  |  |
| 0, 1, 0                                          | m <sub>S</sub> / p                                                                                                                                                                                               | F                                                                                                                     | Better                                                 |  |  |
| 0, 0, 1                                          | m <sub>T</sub> / p                                                                                                                                                                                               | speedup                                                                                                               |                                                        |  |  |
| 0, 0, 0                                          | 0                                                                                                                                                                                                                | never                                                                                                                 |                                                        |  |  |

### Discussion (1/2)

Closed formula for optimal load L

 No closed formula for shares p<sub>1</sub>, ..., p<sub>k</sub>, but can compute numerically

 Optimal Plan: broadcast smaller relations, hash-partition larger relations

### Discussion (2/2)

#### Optimal Plan Depends on p

- When p is small:
  - Broadcast the "small" relation(s)
  - Linear speedup ~ p
- When p is large
  - All relations look "big"
  - Sub-linear speedup ~ p<sup>™</sup>



#### Skew

#### **Skew Matters**

 Skewed data significantly degrades the performance in distributed query processing; skewed values must be treated specially

 State of the art in large scale distributed system: DIY

#### Skewed Values → Residual Query

$$Q(x,y,z) = R(x,y) \wedge S(y,z)$$

#### No-skew:

$$T^* = 1$$
,  $L = m/p$ 







Skew necessarily leads to higher load



 $\mathbf{Q}(\mathbf{x_1}, \dots, \mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell})$ 

 $|S_1| = |S_2| = \dots = m$ 

### Residual-Query Algorithm

**Def**. A value is a <u>heavy hitter</u> if it occurs > m/p times

**Def**. Fix  $\mathbf{x} \subseteq \{\mathbf{x}_1, ..., \mathbf{x}_k\}$ . The <u>residual query</u>  $\mathbf{Q}_{\mathbf{x}}$  is obtained from  $\mathbf{Q}$  by removing the variables  $\mathbf{x}$  and the empty atoms.

**Algorithm**: In parallel, for every combination of heavy/light, compute the residual query for that combination

**Theorem**. The algorithm is optimal for 1 round.

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

Heavy hitter = a value that occurs at least m/p times Each attribute has at most p heavy hitters

| X     | у     | Z     | Residual query                       | т*  | L                  | $p_1 \times p_2 \times p_3$             |
|-------|-------|-------|--------------------------------------|-----|--------------------|-----------------------------------------|
| light | light | light | $R(x,y) \wedge S(y,z) \wedge T(z,x)$ | 3/2 | m/p <sup>2/3</sup> | $p^{1/3} \times p^{1/3} \times p^{1/3}$ |
|       |       |       |                                      |     |                    |                                         |
|       |       |       |                                      |     |                    |                                         |
|       |       |       |                                      |     |                    |                                         |

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

Heavy hitter = a value that occurs at least m/p times Each attribute has at most p heavy hitters

| X     | у     | Z     | Residual query                       | т*  | L                  | $p_1 \times p_2 \times p_3$             |
|-------|-------|-------|--------------------------------------|-----|--------------------|-----------------------------------------|
| light | light | light | $R(x,y) \wedge S(y,z) \wedge T(z,x)$ | 3/2 | m/p <sup>2/3</sup> | $p^{1/3} \times p^{1/3} \times p^{1/3}$ |
| light | light | heavy | $R(x,y) \wedge S(y) \wedge T(x)$     | 2   | m/p <sup>1/2</sup> | $p^{1/2} \times p^{1/2} \times 1$       |
|       |       |       |                                      |     |                    |                                         |
|       |       |       |                                      |     |                    |                                         |

$$Q(x,y,z) = R(x,y) \wedge S(y,z) \wedge T(z,x)$$

Heavy hitter = a value that occurs at least m/p times Each attribute has at most p heavy hitters

| X     | у     | Z     | Residual query                       | т*  | L                  | $p_1 \times p_2 \times p_3$             |
|-------|-------|-------|--------------------------------------|-----|--------------------|-----------------------------------------|
| light | light | light | $R(x,y) \wedge S(y,z) \wedge T(z,x)$ | 3/2 | m/p <sup>2/3</sup> | $p^{1/3} \times p^{1/3} \times p^{1/3}$ |
| light | light | heavy | $R(x,y) \wedge S(y) \wedge T(x)$     | 2   | m/p <sup>1/2</sup> | $p^{1/2} \times p^{1/2} \times 1$       |
| light | heavy | heavy | $R(x) \wedge T(x)$                   | 1   | m/p                | p × 1 × 1                               |
|       |       |       |                                      |     |                    |                                         |

Broadcast S(y,z)OK because  $|S| \le p^2$ 

#### Discussion

 General principle for skew: ignore heavy hitter, compute residual query

When data is skewed, load necessarily increases

Next: use *multiple rounds* to avoid increase

### Multiple Rounds

#### Multiple Rounds

#### State of the art:

 Each operator level in the query plan is a separate round

#### Theoretical results are limited

- No skew: difficult theoretical analysis
- Skewed data: optimality for some queries

 $\mathbf{Q}(\mathbf{x_1}, \dots, \mathbf{x_k}) = \mathbf{S_1}(\mathbf{\bar{x}_1}) \wedge \mathbf{S_2}(\mathbf{\bar{x}_2}) \wedge \dots \wedge \mathbf{S_\ell}(\mathbf{\bar{x}_\ell})$ 

#### A Lower Bound

p\* = optimal edge covering number of Q

AGM bound

**Theorem** Suppose each  $S_i$  has size  $\leq m$ . Then  $|Q(DB)| \leq m^{\rho^*}$ .

Corollary Any r rounds algorithm has load L≥m/p<sup>1/p\*</sup> × 1/r

**Proof** Let DB be a "worst" instance  $|Q(DB)| = m^{\rho^*}$ 

A server receives in total at most r × L tuples from each Si

A server can output at most  $(r \times L)^{p^*}$  answers from Q(DB)

All p servers output  $p \times (r \times L)^{p^*} \ge m^{p^*}$  answers.

#### Discussion

- Multi-rounds help mitigate skew penalty
- Optimal load known to be m<sup>ρ\*</sup> but only in special cases; open in general
- Vertex cover T\* versus edge cover p\*
  - 1-round, no-skew v.s. multi-rounds, skew
  - For graphs: τ\* ≤ ρ\*
  - For hypergraphs: no relationship τ\*, ρ\*

#### Conclusions

#### Communication cost

Critical parameter in distributed computing

Full CQ only: for aggregates, see FAQ

Shared nothing: but also shared memory