CSES544
Data Management

Lectures 15
Parallel Query Processing

CSE 544 - Winter 2020

Announcements

* Poster presentations:
— Friday: 10am — ?? In the atrium
— No access to the CS printer? - Walter!
— Please bring a laptop to give a demo

* Review of the Snowflake paper was due
today

 Homework 5 will be posted on Wednesday

Outline

 MapReduce
« Snowflake

» Optimal parallel algorithm

References

« Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on
Large Clusters. OSDI'04

 D. DeWitt and M. Stonebraker. Mapreduce — a

major step backward. In Database Column
(Blog), 2008.

Distributed File System (DFS)

For very large files: TBs, PBs
Each file partitioned into chunks (64MB)
Each chunk replicated (=3 times) — why?

Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

MapReduce

« Google:
— Started around 2000
— Paper published 2004
— Discontinued September 2019

* Free variant. Hadoop

 MapReduce = high-level programming
model and implementation for large-scale
parallel data processing

Data Model

Files!
A file = a bag of (key, value) pairs
A MapReduce program:

 Input: a bag of (inputkey, value) pairs
« Qutput: a bag of (outputkey, value) pairs

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
* Quput: bag of (intermediate key, value)

System applies the map function in parallel
to all (input key, value) pairs in input file

CSE 544 - Winter 2020

Step 2: the REDUCE Phase

User provides the REDUCE function:
* Input: (intermediate key, bag of values)
» Qutput: bag of output (values)

System groups all pairs with the same
iIntermediate key, and passes the bag of
values to the REDUCE function

CSE 544 - Winter 2020

Example

« Counting the number of occurrences of each
word in a large collection of documents
* Each Document

— The key = document id (did)
— The value = set of words (word)

reduce(String key, lterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

map(String key, String value):
// key: document name
/[value: document contents
for each word w in value:
Emitintermediate(w, “17);

CSE 544 - Winter 2020 10

MapReduce = GroupBy-Aggregate

Occurrence(doclD, word)

select word, count(*)
from Occurrence
group by word

MAP

(did1,v1)|—

(did2,v2)|—

(did3,v3)|—

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

Shuffle

R

CSE 544 - Winter 2020

REDUCE

w1, (1,1,1,...,1))

w2, (1,1,...))

(w1, 25)

(w3,(1...))

(W2, 77)

(w3, 12)

12

Jobs v.s. Tasks

A MapReduce Job

— One simple “query”, e.g. count words in docs
— Complex queries may require many jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or
reduce-function, to be scheduled on a single
worker

Workers

 A'worker is a process that executes one
task at a time

* Typically there is one worker per
processor, hence 4 or 8 per node

Fault Tolerance

* |f one server fails once every year...
... then a job with 10,000 servers will fail in
less than one hour

 MapReduce handles fault tolerance by writing
intermediate files to disk:
— Mappers write file to local disk

— Reducers read the files (=reshuffling); if the
server fails, the reduce task is restarted on
another server

MAP Tasks

/

-~

(did1,v1)

[——

(did2,v2)

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(W2,1)//

(did3,v3)

]

Shuffle

REDUCE Tasks

/

(

w1, (1,1,1,...,1))

w2, (1,1,...))

(w1, 25)

(w3,(1...))

(W2, 77)

(w3, 12)

>

CSE 544 - Winter 2020

16

MapReduce Execution Details

i i Output to
- W

Reduce Task
Intermediate data
(Shuffle) goes to local disk:
M x R files (why?)
Task

Data not
necessarily local
>
File system:
GFS or HDFS

CSE 544 - Winter 2020 17

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—Map —#'Combine

- = —

——>‘ Copy |—>M—>‘ Reduce \
l filel

HDFS

Local storage

CSE 544 - Winter 2020 18

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

Interesting Implementation Details

Worker failure:
» Master pings workers periodically,

* If down then reassigns the task to another
worker

Interesting Implementation Details

Backup tasks:
« Straggler = a machine that takes unusually
long time to complete one of the last tasks.

— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)

— The cluster scheduler has scheduled other tasks
on that machine

« Stragglers are a main reason for slowdown

« Solution: pre-emptive backup execution of
the last few remaining in-progress tasks

MapReduce v.s. Databases

Blog by DeWitt and Stonebraker

« “Schemas are good”

* “Indexes”

« "Skew” (MR mitigates it somewhat, how?)
* The M * R problem — what is it?

» “Parallel databases uses push (to sockets)
instead of pull” — what’s the point?

Snowflake — Discussion

 "The Snowflake Elastic Data Warehouse”,
Dageville et al., SIGMOD’2016

DATA516/CSEDS16 - Fall 2019

23

Snowflake

 Itis an SaaS — what is this? Give other
examples of types of cloud services...

DATA516/CSEDS16 - Fall 2019

24

Snowflake

 Itis an SaaS — what is this? Give other
examples of types of cloud services...

e SaaS = software as a service

* Other examples:

— Platform as a service (PaaS): e.g. Amazon’s
EC

— Infrastructure as a service (virtual machines)

— Software as a Service
— Function as a Service: Amazon’s Lambda

DATA516/CSEDS16 - Fall 2019

25

Snowflake

» Describe Snowflake’s Data Storage

DATA516/CSEDS16 - Fall 2019

26

Snowflake

» Describe Snowflake’s Data Storage

In class:

« S3:PUT/GET/DELETE

 Table - horizontal
partition in files

* Blobs+PAX
* Temp storage—>S3

4)
Authentication and Access Control
Cloud Infrastructure Optimi Transaction 3 .
Services Manager ptmizer Manager | | 2™ ty
8 8 8 8 8 Metadata Storage
\§ J
(Virtual R Virtual Virtual Virtual R
Warehouse Warehouse Warehouse Warehouse
oogaogll || OOd || (([OOogdl] (| Oo0od |
| Cache | | Cache | | Cache | | Cache |
Na ~/ 4
4 N
Data ===
Storage
\§ J

Figure 1: Multi-Cluster, Shared Data Architecture

27

Snowflake

* Describe Elasticity in Snowflake

* Describe failure handling in Snowflake

DATA516/CSEDS16 - Fall 2019

28

Snowflake

* Describe Elasticity in Snowflake
— Virtual Warehouse (VW) serves one user

— T-Shirt sizes: X-Small ... XX-Large
— Small query may run on subset of VW

* Describe failure handling in Snowflake

DATA516/CSEDS16 - Fall 2019

29

Snowflake

* Describe Elasticity in Snowflake
— Virtual Warehouse (VW) serves one user

— T-Shirt sizes: X-Small ... XX-Large
— Small query may run on subset of VW

* Describe failure handling in Snowflake
— Restart the query
— No partial retries (like MapReduce or Spark)

DATA516/CSEDS16 - Fall 2019

30

Snowflake

» Describe its execution engine

DATA516/CSEDS16 - Fall 2019

31

Snowflake

Describe its execution engine
Column-oriented (in class)
Vectorized (“tuple batches” — in class)

Push-based (in class)

DATA516/CSEDS16 - Fall 2019

32

Snowflake

 \What does Snowflake use instead of
iIndexes?

DATA516/CSEDS16 - Fall 2019

33

Snowflake

 \What does Snowflake use instead of
iIndexes?

* “Pruning’”: for each file (recall: this is a
horizontal partition of a table) and each
attribute, it stores the min/max values in
that column in that file; may skip files when
not needed.

DATA516/CSEDS16 - Fall 2019 34

Parallel Processing of Complex
Queries

Communication v.s. Rounds

* Multi-join Query: R xS < T x K

» Solution 1: use multiple rounds:
—Round 1: R ™ S
—Round 2: (R S)x T
—Round 3: (R~ S) x T) x K

» Solution 2: use a single round, with more
communication

Outline

Basics
Unequal Inputs

Skew

Multiple rounds

IR| =|S| = |T| = m tuples

The Triangles Query

Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

Round 1: Temp(x,y,z) = R(x,y) AS(y,z)
Round 2: Q(x,y,z) = Temp(x,y,z) AT(z,x)

Problem: |Temp| >> m

IR| =|S| = |T| = m tuples

The Triangles Query

Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

Algorithm in one round!
 [Afrati’10] Shares Algo (MapReduce)
« [Beame’'13,’14] HyperCube Algo (MPC)

Q(x,y,z) =

R(x,y)AS(y,z) AT(z,x)

IRl =

|IS| = |T| = m tuples

Triangles in One Round

* Place servers in a cube p =p'3 x p3 x p1/3
« Each server identified by (i,},k)

* Choose 3 random, mdependent hash functions:

N4
N, !

Dom =

N, !

Dom =

Dom =2 [p

1/3]
:p1/3:
P

1/3]

Server (i,},k)

1/3

Q(x,y,z) = R(x,y)AS(y,z) AT(z,x)

IR| = [S| = |T| = m tuples

Triangles in One Round

-

Z X
S Fred Alice
v z Jim
R Fred lice Jim
. v Jim
_ Alice
Fred Alice .
Jim
Jack Jim .
lice
Fred Jim Jack
Carol Alice

Round 1:

Send R(x,y) to all servers (h{(x),hx(y),*)

Send S(y,z) to all servers (*, hy(y), hs(z))

Send T(z,x) to all servers (h4(x), *, h3(z))
Output:

compute locally R(x,y) AS(y,z) AT(z,x)

Jim Jack
|
Jim sJack
I = 7. I
IR A
Fred /T Jim :
Jim) A Al

1/3

i = h, (Fred)

Q(x,y,z) = R(X,y) AS(y,z) AT(z,x) IR| = [S]| = |T| = m tuples

Communication Cost

Theorem HyperCube has load L = O(m/p?/?)
w.h.p., on any input database without skew.

Skew threshold: m/p“;@I

This load is optimal, even for data without skew

Recap

» So far we discussed:
—Join L=m/p
— Triangles L = m/p??3

 How do we compute a full CQ?

Q(Xl, .« .. ,Xk) — Sl(}_il) A\ SQ()_CQ) VANRIIERVAN Sg()_(g)

* Hypercube: p=p,*p, ™ ... " py
* Optimize shares p4, p,, ..., Px t0o Minimize L

Q(x1,...,XK) = S1(X1) A S2(X2) A -+ - ASy(Xe) IS4|=1S5|=...=m

Review

Definition. A fractional vertex cover of a hypergraph are weights
v1 ..., v, s.t. for each hyperedge, the sum of its weights is = 1

o
—
o
N
-y
*
|
N

o o ® T = 3/2 0 1 0
@ @

._\
@ O

Yo iz

Q(x1,...,XK) = S1(X1) A S2(X2) A -+ - ASy(Xe) 1S1|= 1S5/ = ... =m

Optimal Shares

Theorem. The optimal shares are p, = p¥'/T.
The optimal load is L = O(m/p"™) on databases without skew.

R(x,y) AS(y,z) RxY)AS(Y,2)AT(zX) RXY)ASY,2) AT(z,u) AK(u,v)
0 1 0 Z R,
° ° ° T = 3/2 0 1 0 1 0

T =1 ” ” S —
L=m/p L=m/p?3 L=m/p'?
" Speedup

10
/P

5 ammm/p/2/3

am=mm/p™M /2

12345678910111213 P

Discussion

* Hypercube algorithm: communication only
— We do not discuss the local computation

* Optimal algorithm = optimal vertex cover
» Load m/p!/™ depends on input, not output!

Many restrictions...
Next: remove restrictions

Unequal Inputs

Motivation

Cardinalities m,, m,, ... are the simplest
kind of data statistics

State of the art: even the simplest
optimizers today use cardinalities

E.g.. Rx S:if R>> G, then broadcast S

What is the optimal load L = f(m,, m,, ...)?

Warm up: Cartesian Product
Q(X,y) = S1(x) ASa(y), | Sql = my [Sy| =my

1 2

Fact Optimal load

m+m 1/2
Lopt:2< ! 2)

P Si(x) 2 -
Proof optimal when P1
my/py=my/py = (my my/p)t= N
If m, << m, then it becomes broadcast join! ;)?

Q(Xq,...,.%c) = Sq(x1) A+ ASe(xe)

Fact. Optimal load

1/c
m]_ ...mc
Lop'[= C ()
p

Q(x1,...,XKk) = S1(X1) AS2(X2) A+ A Sy(Xe) Relations sizes= m,, m,, ...

A Simple Lower Bound on L

Definition. A edge packing is a set of atoms S;_,---S;_that
do not share any variables.

Fact. For any packing, S;, ,---S;_ any 1-round algorithm

Jis

C.m. \ Y/c
computingQ hasload L > ¢ (mJl ch>
p

Proof To compute Q, the algorithm must also compute S;, X - - - X Sj_

Q(x1,...,XKk) = S1(X1) AS2(X2) A+ A Sy(Xe) Relations sizes= m,, m,, ...

Background

Definition. A fractional edge packing of a hypergraph are weights
us ..., U; s.t. for each node, the sum of its weights is < 1

Q(x1,...,XKk) = S1(X1) AS2(X2) A+ A Sy(Xe) Relations sizes= m,, m,, ...

Optimal Load L

1
ui uz Uy \ uq tus+- +u
. m - 1m e 1M 1tuz ¢
Define L(u) def (L 2 g

&

For any fractional edge packing u

Theorem Optimal 1-round load is L = max, L(u)

Example /\ /\
73
Q(x,y,z) = R(X,y)AS(y,2) AT(z,x)

Example /\ /\
Q(x,y,z) = R(X,y)AS(y,2) AT(z,x)

L(u) =

1
(mR“R -mghs - mT“T> UUUUUUUU

p

Example /\ /\
Q(x,y,z) = R(X,y)AS(y,2) AT(z,x)

Vertex of

edge packing)
polytope (mR“R - mg"s - mpYT) uR[FusFur
Ug, Ug, UT

L(u) =

112, 1/2, 1/2

Example /\ /\
Q(x,y,z) = R(X,y)AS(y,2) AT(z,x)

Vertex of

edge packing)
polytope (mR“R - mg"s - mpYT) uR[FusFur
Ug, Ug, UT

L(u) =

112, 1/2, 1/2

1,0,0

0,1,0

0,0, 1

0,0,0

Example

I
Q(x,y,z) = R(X,y)AS(y,z) AT(z,x)
Vertex of
edge packing [“W = 1
polytope (mR“R - mg!s -mTUT>ﬁ+uS—+uT
Ugr, Us, Ut >
1/2, 1/2, 1/2 | (Mg mg my)13/ p23
1,0,0 mg/p
0,1,0 mg/ p
01 01 1 mT / p
0,0,0 0

T~

L = max of these five values

Example

1
Q(xy.2) = R(xy) AS(y,2) AT(z,X) 0
Vertex of Max when HC Algorithm
: L(u) =
edge packing) ex €y €
polytope (mR“R T) W [Fus T p~-pP~”-P
Ur, Us, Ut P
112, 1/2, 1/2 | (mg mg my)"V3 /[p?3
1,0,0 mg/ p
0,1,0 mg/ p
0,0, 1 m+/ p
0,0,0 0

T~

L = max of these five values

Example

1
Q(xy,2) = RxY)AS(y,2) AT(z,X) L0
Vertex of Max when HC Algorithm
: L(u) =
edge packing) ex €y €
polytope (mR“R - mg"S - mp"T) wnfFesTor p--p°P
Ur, Us, Ut P
112, 1/2, 1/2 | (mg mg my)"V3 /[p?3
1,0,0 mg/ p
0,1,0 mg/ p
0,0, 1 m+/ p
0,0,0 0 never

T~

L = max of these five values

Example

1
Q(x,Y,2) = R(Y)AS(y,2) AT(z,X) A"
Vertex of Max when HC Algorithm
. L(u) =
edge packing) €x . €y . 1€z
pO'Ytope (mRuR -mg"s - mp"T) uRffusfur P & &
uRa Us, uT P
112, 1/2, 1/2 | (mg mg my)3/p?3 | mg=mg=m; e €y, e,>0
1,0,0 Mg/ p
0,1,0 mg/p
0,0, 1 my/p
0,0,0 0 never

~—

L = max of these five values

Example

Yz 1 0
Q(x,.2) = R(X,Y) AS(y,2) AT(z,x) LV
Vertex of Max when HC Algorithm
edge packing) ex €y €
pO'Ytope (mRuR -mg"s - mp"T) ug [fug fur P |8 P
uRa Us, uT N
112, 1/2, 1/2 | (mg mg my)3/p?3 | mg=mg=m; e €y, e,>0
mg mgmr| e,=0
10,0 Mg /P o 2\ " p | join R with product SxT
0,1,0 mg/p
0,0, 1 my/p
0,0,0 0 never

~—

L = max of these five values

Example

1 0)
Q(x,y.z) = R(x,y)AS(y,2) AT(z,x) yam
Vertex of Max when HC Algorithm
edge packing) ex €y €
pO'Ytope (mRuR -mg"s - mp"T) ug [fug fur P |8 P
uRa Us, uT N
112, 1/2, 1/2 | (mg mg my)3/p?3 | mg=mg=m; e €y, e,>0
mg mgmm| e,=0
1,0.0 MR/P—___ |5 ZV b | join R with product SxT
0,1,0 /
y 1y Mg/ P \.\ B;[ter\
0,0, 1 my/p & speedup)
0,0,0 0 never |

~—

L = max of these five values

Discussion (1/2)

» Closed formula for optimal load L

* No closed formula for shares p., ..., p;,
but can compute numerically

* Optimal Plan: broadcast smaller relations,
hash-partition larger relations

Discussion (2/2)

Optimal Plan Depends on p
 When p is small:

— Broadcast the “small” relation(s)

— Linear speedup ~p
 When p is large

— All relations look “big”

— Sub-linear speedup ~ p™

O

1 Speedup

Skew

Skew Matters

« Skewed data significantly degrades the
performance in distributed query
processing; skewed values must be
treated specially

« State of the art in large scale distributed
system: DIY ®

Skewed Values - Residual Query

Q(x,y,z) = R(x,y) AS(y.2) b
t,, W
oy 3
No-skew: o
™=1, L=mlp
1 2
Skewed: Q(x,z) = R(x) A S(z) ;
=2, L=mip"
> [T
p1/2

Skew necessarily leads to higher load

S(z) 2

Q(x1,...,Xk) = S1(X1) AS2(X2) A -+ A Sy(Xy) 1IS¢| =[S, =...=m

Residual-Query Algorithm

Def. A value is a heavy hitter if it occurs > m/p times

Def. Fix x S{x4, ..., X }. The residual query Q, is obtained
from Q by removing the variables x and the empty atoms.

Algorithm: In parallel, for every combination of heavy/light,
compute the residual query for that combination

Theorem. The algorithm is optimal for 1 round.

Example

Q(x,y,z) = R(X,y)AS(y,z) AT(z,X)

Heavy hitter = a value that occurs at least m/p times
Each attribute has at most p heavy hitters

X

y

Z

Residual query

*

T

P1* P2 * P3

light

light

light

R(x,Y)AS(y,z) AT(z,X)

3/2

m/p2/3

1 1 1
P13 x p13 x p1i3

Example

Q(x,y,z) = R(X,y)AS(y,z) AT(z,X)

Heavy hitter = a value that occurs at least m/p times
Each attribute has at most p heavy hitters

*

X y Z Residual query T L P1 X P2 X P3
light light light R(X,Y)AS(Y,z2)AT(z,x) | 3/2 | m/p23 | p¥3x pl3x pl/3
light light | heavy R(X,Y)AS(y)AT(x) 2 m/p'2 | pl2x pl2x 1

Example

Q(x,y,z) = R(X,y)AS(y,z) AT(z,X)

Heavy hitter = a value that occurs at least m/p times
Each attribute has at most p heavy hitters

X y Z Residual query T L P1 X P2 X P3
light light light R(X,Y)AS(Y,z2)AT(z,x) | 3/2 | m/p23 | p¥3x pl3x pl/3
light light | heavy R(X,Y)AS(y)AT(x) 2 m/p'2 | pl2x pl2x 1
light | heavy | heavy R(X) A T(x) 1 m/p px1x1

/

Broadcast S(y,z)
OK because |G| < p?

Discussion

* General principle for skew: ignore heavy
hitter, compute residual query

 When data is skewed, load necessarily
Increases

Next: use multiple rounds to avoid increase

Multiple Rounds

Multiple Rounds

State of the art:

« Each operator level in the query planis a
separate round

Theoretical results are limited
* No skew: difficult theoretical analysis
« Skewed data: optimality for some queries

Q(Xl, ... ,Xk) — Sl()_il) A\ Sz(}_iz) VANKIRIERVAN Sg(}_(g)

A Lower Bound

p* = optimal edge covering number of Q

Theorem Suppose each S; has size < m. Then |Q(DB)| < m*".

Corollary Any r rounds algorithm has load L = m/p"f" x 1/r

Proof Let DB be a “worst” instance |Q(DB)| = mef’
A server receives in total at most r x L tuples from each S;
A server can output at most (rxL)?" answers from Q(DB)

All p servers output px(rxL)? = mf" answers.

Discussion

* Multi-rounds help mitigate skew penalty

» Optimal load known to be m?" but only in
special cases; open in general
* Vertex cover 1" versus edge cover p*
— 1-round, no-skew v.s. multi-rounds, skew
— For graphs: 1* < p*
— For hypergraphs: no relationship 1%, p*

Conclusions

Communication cost
 Critical parameter in distributed computing
 Full CQ only: for aggregates, see FAQ

* Shared nothing: but also shared memory

