CSE544 Data Management

Lectures 14
Parallel Query Processing

Skew

Skew

 Skew in the input: a data value has much higher frequency than others

 Skew in the output: a server generates many more values than others, e.g. join

Skew in the computation

Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]

Eq-depth v.s. eq-width histograms

Some Skew Handling Techniques

Create more partitions than nodes

And be smart about scheduling the partitions

- Note: MapReduce uses this technique
 - We will talk about MapReduce later

Input Skew

 We will discuss how to manage skew in the input

 Recall <u>Skew join</u>: partition values into light and heavy, join them separately

Need to define <u>light</u> and <u>heavy</u>

Given: N data items x₁, ..., x_N

- We hash-partition them to P nodes
- When is the partitioning uniform?

Given: N data items x₁, ..., x_N

- We hash-partition them to P nodes
- When is the partitioning uniform?

Uniform: each node has O(N/P) items

- Given: N data items x₁, ..., x_N
- We hash-partition them to P nodes
- When is the partitioning uniform?
- Uniform: each node has O(N/P) items
- Skew: some node has >> N/P items

- Given: N data items $x_1, ..., x_N$
- We hash-partition them to P nodes
- When is the partitioning uniform?
- Uniform: each node has O(N/P) items
- Skew: some node has >> N/P items
- 1. Because of the hash function h, or
- 2. Because of skew in the data

Assume $x_1, ..., x_N$ are distinct Hash function computes $h(x_i) \in \{1,...,P\}$

 If h is <u>fixed</u> then we can find bad items that will overload one server; how?

Assume $x_1, ..., x_N$ are distinct Hash function computes $h(x_i) \in \{1,...,P\}$

 If h is <u>fixed</u> then we can find bad items that will overload one server; how?

 If h is <u>random</u> (every day we choose another h...): <u>balls-in-bins</u> problem

Fix a node $j \in \{1,...,P\}$; compute its load

Fix a node $j \in \{1,...,P\}$; compute its load

• $\forall x_i$, $Pr(h(x_i) = j) = 1/P$

Fix a node $j \in \{1,...,P\}$; compute its load

- $\forall x_i$, $Pr(h(x_i) = j) = 1/P$
- E[Load(j)] = $\sum_{i=1,N} Pr(h(x_i) = j) = N/P$

Fix a node j ∈ {1,...,P}; compute its load

- $\forall x_i$, $Pr(h(x_i) = j) = 1/P$
- E[Load(j)] = $\sum_{i=1,N} Pr(h(x_i) = j) = N/P$
- Fix δ ∈ (0,1]; call the node j "bad" if Load(j) > (1+ δ) N/P

Fix a node j ∈ {1,...,P}; compute its load

- $\forall x_i$, $Pr(h(x_i) = j) = 1/P$
- E[Load(j)] = $\sum_{i=1,N} Pr(h(x_i) = j) = N/P$
- Fix δ ∈ (0,1]; call the node j "bad" if Load(j) > (1+ δ) N/P
- Chernoff Bound:

$$Pr(bad(j)) \le exp(-\delta^2/3 * N/P)$$

Fix a node $j \in \{1,...,P\}$; compute its load

- $\forall x_i$, $Pr(h(x_i) = j) = 1/P$
- E[Load(j)] = $\sum_{i=1,N} Pr(h(x_i) = j) = N/P$
- Fix δ ∈ (0,1]; call the node j "bad" if Load(j) > (1+ δ) N/P
- Chernoff Bound:

$$Pr(bad(j)) \le exp(-\delta^2/3 * N/P)$$

Pr(bad(1) $\vee \dots \vee bad(P)$) $\leq P * exp(-\delta^2/3*N/P)$

```
Summary: Bad(j) = (Load(j) > (1 + \delta) N/P)
Pr(bad(1)\vee ... \vee bad(P)) \leq P * exp(-\delta^2/3*N/P)
```

```
Summary: Bad(j) = (Load(j) > (1 + \delta) N/P)
Pr(bad(1)\vee ... \vee bad(P)) \leq P * exp(-\delta^2/3*N/P)
```

 When N/P is large, then the probability of having any "bad" node is very small;

```
Summary: Bad(j) = (Load(j) > (1 + \delta) N/P)
Pr(bad(1)\vee ... \vee bad(P)) \leq P * exp(-\delta^2/3*N/P)
```

 When N/P is large, then the probability of having any "bad" node is very small;

E.g. $\delta = 0.5$, N > P*log(P) then:

Pr(some node has load>150%) $< 1/P^{0.92}$

```
Summary: Bad(j) = (Load(j) > (1 + \delta) N/P)
Pr(bad(1)\vee ... \vee bad(P)) \leq P * exp(-\delta^2/3*N/P)
```

- When N/P is large, then the probability of having any "bad" node is very small;
 E.g. δ = 0.5, N > P*log(P) then:
 Pr(some node has load>150%) < 1/P^{0.92}
- When N=P then this argument won't work;
 Balls in bins: E[Load(j)] = 1 but

 $E[\max_{j} Load(j)] \approx 2 log N/log(log(N))$

Takeaways

- Don't write your own hash function
- Randomize it (how?)
- Make sure you have enough items,
 N >> P (otherwise, why parallelize?)

Then Load = O(N/P)

Assume $x_1, ..., x_N$ may have duplicates

Assume $x_1, ..., x_N$ may have duplicates

 Fact: if some item x_i occurs > N/P times then some node j has: Load(j) > N/P

Assume $x_1, ..., x_N$ may have duplicates

 Fact: if some item x_i occurs > N/P times then some node j has: Load(j) > N/P

Conversely, if every value occurs << N/P times, then load per node is O(N/P)

Assume $x_1, ..., x_N$ may have duplicates

 Fact: if some item x_i occurs > N/P times then some node j has: Load(j) > N/P

Conversely, if every value occurs << N/P times, then load per node is O(N/P)

Proof sketch: assume each item occurs exactly K times. Thus N/K distinct items, and we use previous argument

Light and Heavy Hitters

- Light hitters: values that occur << N/P times
 - For the precise threshold use some fudge factor that is about log(P)

- Heavy hitters: the others
 - Good news: there are only about Õ(P) heavy hitter values. (Why?)

Skew Join - Recap

 $R(A,B) \bowtie_{B=C} S(C,D)$

- Problem: skewed values C in S
- Preprocessing: identify heavy hitter values C (occur > N/P / fudge-factor)
- Partition S into Slight and Sheavy
- Use partition hash-join for R ⋈ S^{light}
- Use broadcast join for R ⋈ S^{heavy}