
CSE544
Data Management

Lecture 4
Data Models

CSE 544 - Winter 2020 1

Announcements

• Tomorrow (Thursday): makeup lecture
at 10:30am, CSE2 371

• Homework 1 is due on Friday

• Start to think about class projects

2

References

• M. Stonebraker and J. Hellerstein. What
Goes Around Comes Around. In
"Readings in Database Systems" (aka
the Red Book). 4th ed.

CSE 544 - Winter 2020 3

Data Model Motivation
• Applications need to model real-world data

• User somehow needs to define data to be stored
in DBMS

• Data model enables a user to define the data
using high-level constructs without worrying about
many low-level details of how data will be stored
on disk

CSE 544 - Winter 2020 4

Levels of Abstraction

5

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

schema seen
by apps

Classical picture.
Remember it !

Different Types of Data
• Structured data

– All data conforms to a schema. Ex: business data

• Semistructured data
– Some structure in the data but implicit and irregular

• Unstructured data
– No structure in data. Ex: text, sound, video, images

• Our focus: structured data & relational DBMSs
CSE 544 - Winter 2020 6

Outline
• Early data models

– IMS
– CODASYL

• Physical and logical independence in the
relational model

• Data models that followed the relational model

CSE 544 - Winter 2020 7

Early Proposal 1: IMS
• What is it?

CSE 544 - Winter 2020 8

Early Proposal 1: IMS
• Hierarchical data model

• Record
– Type: collection of named fields with data types
– Instance: must match type definition
– Each instance has a key
– Record types arranged in a tree

• IMS database is collection of instances of record
types organized in a tree

9

IMS Example
• Figure 2 from “What goes around comes around”

CSE 544 - Winter 2020 10

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

CSE 544 - Winter 2020 11

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:
– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language
– Programmers construct algorithm, worry about optimization

CSE 544 - Winter 2020 12

Data storage
How is data physically stored in IMS?

13

Data storage
How is data physically stored in IMS?

• Root records
– Stored sequentially (sorted on key)
– Indexed in a B-tree using the key of the record
– Hashed using the key of the record

• Dependent records
– Physically sequential
– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization
– No “get-next” for hashed organization

14

Data Independence

What is it?

15

Data Independence

What is it?

• Physical data independence: Applications
are insulated from changes in physical
storage details

• Logical data independence: Applications
are insulated from changes to logical
structure of the data

16

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface
– User must specify algorithm to access data

• Very limited physical independence
– Phys. organization limits possible operations
– Application programs break if organization changes

• Some logical independence but limited

Early Proposal 2: CODASYL
What is it?

CSE 544 - Winter 2020 18

Early Proposal 2: CODASYL
What is it?
• Networked data model

• Primitives are also record types with keys
• Record types are organized into network

– Multiple parents; arcs = “sets”; at least one entry point
• More flexible than hierarchy

• Record-at-a-time data manipulation language

CSE 544 - Winter 2020 19

CODASYL Example
• Figure 5 from “What goes around comes around”

CSE 544 - Winter 2020 20

CODASYL Limitations
• No physical data independence

– Application programs break if organization changes
• No logical data independence

– Application programs break if organization changes
• Very complex
• Programs must “navigate the hyperspace”
• Load and recover as one gigantic object

CSE 544 - Winter 2020 21

Outline
• Early data models

– IMS
– CODASYL

• Physical and logical independence in the relational model

• Data models that followed the relational model

CSE 544 - Winter 2020 22

Relational Model Overview
• Proposed by Ted Codd in 1970

• Motivation: logical and physical data independence

• Overview
– Store data in a simple data structure (table)
– Access data through set-at-a-time language
– No need for physical storage proposal

Great Debate

• Pro relational
– What were the arguments?

• Against relational
– What were the arguments?

• How was it settled?

CSE 544 - Winter 2020 24

Great Debate
• Pro relational

– CODASYL is too complex
– CODASYL does not provide sufficient data independence
– Record-at-a-time languages are too hard to optimize
– Trees/networks not flexible enough to represent common cases

• Against relational
– COBOL programmers cannot understand relational languages
– Impossible to represent the relational model efficiently

• Ultimately settled by the market place

CSE 544 - Winter 2020 25

Data Independence

How is data independence is achieved in
RDBMS today:

• Physical independence:
– SQL to Query Plan

• Logical independence
– SQL Views

CSE 544 - Winter 2020 26

Levels of Abstraction

27

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

Query Optimizer

• SQL à Relational Algebra Plan (RA)

• RA à Optimized RA

• Algebraic identities of RA; examples:
1. Pushing selections down
2. Join reorder

28

Example Optimization
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT x.name
FROM. Supplier x, Supply y
WHERE x.sid = y.sid

and x.scity = ‘Seattle’

Example Optimization
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

SELECT x.name
FROM. Supplier x, Supply y
WHERE x.sid = y.sid

and x.scity = ‘Seattle’

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

σC(R ⋈ S) = σC(R) ⋈ S when C refers only to R

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ and y.pno=5

Πx.sname

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ and y.pno=5

Πx.sname

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

σy.pno=5

Push Selections Down
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ and y.pno=5

Πx.sname

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’

Πx.sname

σy.pno=5

σC1 and C2(R ⋈ S) = σC1(σC2(R ⋈ S)) = σC1(R ⋈ σC2(S)) = σC1(R) ⋈ σC2(S)

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

(R ⋈ S) ⋈ T= R ⋈ (S ⋈ T)

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

(R ⋈ S) ⋈ T= R ⋈ (S ⋈ T)

Also: R ⋈ S = S ⋈ R

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

(R ⋈ S) ⋈ T= R ⋈ (S ⋈ T)

Also: R ⋈ S = S ⋈ R

When is one plan better than the other?

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ σz.pprice > 99

Part z

⋈y.pno = z.pno

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ σz.pprice > 99

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ σz.pprice > 99

Part z

⋈y.pno = z.pno

When is one plan better than the other?

Join Reorder
Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ σz.pprice > 99

Part z

⋈y.pno = z.pno

Supplier x Supply y

⋈x.sid = y.sid

σx.scity=‘Seattle’ σz.pprice > 99

Part z

⋈y.pno = z.pno

When is one plan better than the other?

Lesson: need sizes of σx.scity=‘Seattle’(Supplier), σz.pprice > 99(Part)

Summary of Phys. Data Indep

Physical data independence based on:
• SQL to Query Plan
• Query Plan is optimized
• Optimized Query Plan to Physical Plan

Will discuss this later in this course

CSE 544 - Winter 2020 45

Logical Independence
• Applications are insulated from changes to logical

structure of the data

• Relational model
– Logical independence through views

CSE 544 - Winter 2020 46

Logical Data Independence
In SQL: based on views

A View is a relation
• Virtual views:

– Computed on demand, at query time
– Default in SQL, and what Stonebraker means in the paper

• Materialized views:
– Computed and stored persistently

• Pros and cons?
CSE 544 - Winter 2020 47

View Example

CSE 544 - Winter 2020 48

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

View definition:

View Example

CSE 544 - Winter 2020 49

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

View definition:

Virtual table:

View Example

CSE 544 - Winter 2020 50

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

SELECT *
FROM Big_Parts
WHERE pcolor='blue';

View definition:

Virtual table:

Querying the view:

Updating Through Views
• Updatable views (SQL-92)

– Defined on single base relation
– No aggregation in definition
– Inserts have NULL values for missing fields
– Better if view definition includes primary key

• Non-Updatable views (SQL-99)
– May be defined on multiple tables

• Messy issue in general

51

Summary of Logical Data Indep

• SQL views

• Beyond Logical data indep
– An index is a view (why?)
– Any query result can be stored, and

considered a view
– New problem: given views V1, V2, … find

optimal way to compute a query Q
CSE 544 - Winter 2020 52

Outline
• Early data models

– IMS
– CODASYL

• Physical and logical independence in the relational model

• Data models that followed the relational model

CSE 544 - Winter 2020 53

Other Data Models
• Entity-Relationship: 1970’s

– Successful in logical database design (last lecture)
• Extended Relational: 1980’s
• Semantic: late 1970’s and 1980’s
• Object-oriented: late 1980’s and early 1990’s

– Address impedance mismatch: relational dbs çè OO languages
– Interesting but ultimately failed (several reasons, see references)

• Object-relational: late 1980’s and early 1990’s
– User-defined types, ops, functions, and access methods

• Semi-structured: late 1990’s to the present

CSE 544 - Winter 2020 54

Semistructured vs Relational
• Relational data model

– “Schema first”

• Semistructured data model: XML, Json, Protobuf
– ”Schema last”
– Hierarchical (trees)

CSE 544 - Winter 2020 55

XML Syntax

56
Semistructured, self-describing schema

<article mdate="2011-01-11" key="journals/acta/GoodmanS83">
<author>Nathan Goodman</author>
<author>Oded Shmueli</author>
<title>NP-complete Problems Simplified on Tree Schemas.</title>
<pages>171-178</pages>
<year>1983</year>
<volume>20</volume>
<journal>Acta Inf.</journal>
<url>db/journals/acta/acta20.html#GoodmanS83</url>
<ee>http://dx.doi.org/10.1007/BF00289414</ee>

</article>

JSon

57
Semistructured, self-describing schema

Example from: http://www.jsonexample.com/
myObject = {

"first": "John",
"last": "Doe",
"salary": 70000,
"registered": true,
"interests": ["Reading", “Biking”, "Hacking"]

}

http://www.jsonexample.com/

Discussion

• Stonebraker (circa 1998)
– “schema last” is a niche market

• Today (circa 2020)
– Major vendors scramble to offer efficient

schema discovery while ingesting Json
• Why? What changed?

58

Discussion

• Stonebraker (circa 1998)
– “schema last” is a niche market

• Today (circa 2020)
– Major vendors scramble to offer efficient

schema discovery while ingesting Json
• Why? What changed?

– Today datasets are available in text format,
often in Json; ingest first, process later

59

NoSQL Data Model(s)

• Web boom in the 2000’s created a
scalability crises
– Startup X grows from 10 customers to 10M

customers overnight, how does the MySQL
database grow?

• NoSQL answer:
– “Shard” data, i.e. distribute AWS
– Simple data mode: key/value pairs

CSE 544 - Winter 2020 60

Key-Value Pair Data Model

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

Key-Value Pair Data Model

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

Key-Value Pair Data Model

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)

Example
• How would you represent the Flights data as key,

value pairs?

How does query processing work?

Flights(fid, date, carrier, origin, dest, ...)
Carriers(cid, name)

Example
• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

How does query processing work?

Flights(fid, date, carrier, origin, dest, ...)
Carriers(cid, name)

Example
• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

How does query processing work?

Flights(fid, date, carrier, origin, dest, ...)
Carriers(cid, name)

Example
• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

No physical data independence!

Conclusion
• Data independence is desirable

– Both physical and logical
– People keep reinventing data models with predefined

physical schema
– Relational model is the only one that provides independence

• Query optimizer:
– Is the critical piece that ensures performance with physical

independence

68

